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Abstract

A challenging task in natural language processing is the development of end-to-end dialog
systems that incorporate external knowledge which is stored in databases. This thesis
implements a state-of-the-art sequence-to-sequence model that is trained on the Movie
Dialog Dataset [Dod+15]. The dataset provides a knowledge base that contains meta
data about more than 17k movies, which this thesis stores in an Elasticsearch instance.

Since database operations are non-differentiable, two different ways of training are inves-
tigated. On the one hand, this thesis extends the dataset by intermediate labels, which
represent the query ground truth, and uses them to train the model before the execution
of the database operation. The annotation with intermediate labels required human in-
teraction. On the other hand, policy-based reinforcement learning is used to train the
model on the original question-answer pairs.

This thesis finds that training with intermediate labels achieves an executional accuracy
of 90.6% and thereby approaches the QA benchmark reported by Dodge et al. [Dod+15].
Training with policy gradient achieves an executional accuracy of 84.2% and performs on
a competitive level with an ensemble of Memory Networks. Furthermore, the proposed
sequence-to-sequence model generalizes on unknown question patterns.



Zusammenfassung

Eine aktuelle Forschungsfrage im Natural Language Processing ist die Entwicklung von
Dialogsystemen, die mit Datenbanken interagieren. Diese Masterarbeit implementiert
ein Model nach dem aktuellen Stand der Technik und trainiert es auf dem Movie Dialog
Dataset [Dod+15]. Dabei wird die zum Datensatz gehörende Wissensbasis, mit Metadaten
zu mehr als 17T Filmen, in einer Elasticsearch Instanz abgelegt.

Aufgrund der Tatsache, dass Datenbankabfragen nicht differenzierbar sind, betrachtet
diese Arbeit zwei Ansätze um das Modell zu trainieren. Auf der einen Seite wird das
Modell vor der eigentlichen Ausführung der Abfrage trainiert. Zu diesem Zweck wird der
Movie Dialog Datensatz um die Abfrage-Grundwahrheit ergänzt. Auf der anderen Seite
wird eine Methode aus dem Reinforcement Learning verwendet um das Model auf den
ursprünglichen Frage-Antwort Paaren zu trainieren.

Das auf den annotierten Daten trainierte Model kann für 90.6% aller Fragen die korrekte
Antwort aus der Wissensbasis abfragen. Damit erzielt es ähnliche Ergebnisse wie das von
Dodge et al. [Dod+15] berichtete Referenzsystem. Der Reinforcement Learning Ansatz
findet für 84.2% aller Fragen die korrekte Antwort und erreicht damit ein vergleichbares
Niveau zu einem Ensemble von Memory Netzwerken. Außerdem konnte festgestellt wer-
den, dass das Model über unbekannte Fragemuster generalisiert.
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1 INTRODUCTION 1

1 Introduction

"To be able to ask a question
clearly is two-thirds of the

way to getting it answered."

— John Ruskin

1.1 Motivation

Technology is one of the key drivers guiding the evolution of language and it affects
communication from several sides. For instance it increases the speed of information
flow, it provides new interfaces, offers the possibility to store information or might by
itself be a topic of communication. Furthermore, technology breaks down barriers which
seemed intractable. One development which shows the impact of technology is today’s
influence of machine translation. While translations formerly required skilled translators,
technology enables everyone with an Internet access to gain remarkable insights when
confronted with information in a foreign language [YD15]. Another major impact is the
advent of smartphones. On the one hand, it altered our way of processing information.
In the 21st century, information is ubiquitous as social media allows to share news from
everywhere around the world. Technology enables people to participate in events of public
interest. Presidential speeches, concerts or sport events are accessible from all over the
globe. Same applies during the appearance of a crisis, like natural disasters or acts of
war. The combination of technologies that connect people from a technical and social
point of view, has changed communication between humans significantly. On the other
hand, smartphones revolutionized the way humans interact with machines and devices.
Touchscreens already existed before the rise of smartphones. But smartphones brought
them into daily life. This trend spread to other mobile devices like tablets and even new
generations of laptops.

The next step of evolution in communication between man and machine is happening right
now. In 2011 Apple presented the iPhone 4s. In combination with hardware improvements
the smartphone introduced a digital personal assistant as a complementary service. Such a
system can provide information about your personal calender, stock prices or the weather
forecast. Other manufacturers recognized the potential of such assistants and caught up.
Almost every smartphone one can purchase today will come with a digital assistant that
can receive commands in natural language. The current shift in technology highlights the
importance of voice as an interface between human and machines. Over the last years
leading tech companies like Amazon and Google developed a new generation of devices.
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Their digital assistants, Alexa and Google Home, are fully based on voice commands.
These assistants do not have displays any more. So far, their main field of application is
to control smart home devices, assistance in simple daily tasks and question answering.
It is very likely that their capabilities and usage will increase in the next years.

As these considerations only focused on consumer products it is necessary to add that
the advance of digital assistance will also cover industries and enterprises. According to
a recently published report about the potential of virtual digital assistants (VDAs), the
expected amount of VDAs in enterprises will grow to about 840 million VDAs in 2021.
This represents an increase of 440 percent compared to the number of VDAs in 2015. On
the consumer side, it is estimated that the amount of VDAs will grow from 390 million
in 2015 to 1.8 billion in 2021 [Tra16].

Summarizing these considerations leads to the following three points. Firstly, the current
development in technology points to natural language as a key interface between man
and machine. At this point it is important to emphasize that natural language includes
spoken dialog as well as written instructions. Secondly, technology affects communication
in general. It removes traditional barriers and offers new opportunities to communicate.
Thirdly, the market for digital assistants already exists. It will grow significantly in the
next years.

This thesis aims at the problem field of natural language interfaces (NLI). We are living in
times where access to information is crucial. A significant amount of today’s information
is stored and organized in databases. The ability to access such resources is limited
to the ones who have mastered a corresponding query language [ZXS17]. Applying a
query language in order to access information falls into the same category of problems
as accessing information available in a foreign language. The field of NLI aims for the
interaction between humans and computers through natural language. A subset of NLI is
the research area of semantic parsing. It focuses on the mapping of natural language into
logical forms and structured representations. A database query is such a logical form.
Semantic parsers explicitly separate between the step of parsing natural language to a
logical form and executing the same against a database. However, there is an increased
interest in the application of neural network based solutions to tackle this problem in an
end-to-end fashion [Lia16]. This thesis will follow this trend and determine the capabilities
of such systems. Therefore, the core of this work is to implement a state-of-the-art model
which is able to turn natural language questions into database queries. Typically, such
models are trained with question-query pairs, as a database induces learning problems
caused by broken differentiability. An approach to overcome this problem will be presented
and the proposed model will be trained on question-answer pairs. In terms of practical
relevance, it is a desirable goal to achieve an end-to-end character. Otherwise the system
would require human interaction or intermediate labels. Both would lead to increased
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costs and reduce the flexibility of the solution. Taking these considerations into account
leads to the conclusion that this thesis and the related approach address all three points
mentioned earlier.

1.2 Research Questions and Objective

The main objective of this thesis is to investigate on capabilities of neural network based
dialog systems. Therefore, the following research questions are presented:

1. Which models achieve state-of-the-art in common dialog tasks?

2. How do such models perform on larger question answering tasks with database
interaction?

1.3 Course of Investigation

This thesis splits into six chapters. After this motivational section, Chapter 2 will
present the theoretical foundations of this work. This includes an introduction into dialog
systems and a brief summary of their evolution in Chapter 2.1. In this context, the
standard pipeline architecture will be presented and the shift towards end-to-end solu-
tions will be explained. Later on, details about the underlying methodology of this thesis
will be provided. In order to achieve an end-to-end character the proposed model relies
on deep reinforcement learning (DRL). Chapter 2.2 gives an overview on deep learn-
ing (DL), which will cover the fundamental concepts of artificial neural networks (ANN),
activation functions and gradient-based learning. Subsequently, the family of recurrent
neural networks (RNN) will be introduced. Members of this family are able to process se-
quential data and are therefore useful in problem settings that deal with dialog. An issue
with RNNs is that they fail to capture long-term dependencies due to the vanishing gra-
dient problem. Hence, this thesis will discuss the vanishing gradient problem and present
long short-term memory networks (LSTM), which overcome this problem. Eventually,
Chapter 2.3 covers the topic of reinforcement learning (RL). It will start by defining the
Markov decision process (MDP) as the formal framework of RL and discuss other relevant
concepts like rewards, policies, et cetera. DRL deals with the combination of DL and RL
and is distinguished into three subclasses. This classification will be used to categorize
the approach of this thesis and introduce the REINFORCE algorithm.

Chapter 3 will describe the state-of-the-art in natural language processing and present
the corpora of available datasets that deal with dialog. In ChapterChapter 3.1 sequence-
to-sequence (Seq2Seq) models are introduced. They represent an advanced type of neural
architecture that leverages two RNNs in an encoder-decoder design. To enable neural
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networks to process textual inputs, one typically applies pre-trained word embeddings.
Such transform words into a numerical representation, which can be used for computation.
Word embeddings will be introduced in Chapter 3.2. Since the performance of encoder-
decoder models suffers to capture long-term dependencies due to a bottleneck between
both components, Bahdanau, Cho and Bengio [BCB14] proposed attention mechanisms
for Seq2Seq architectures. They will be discussed in Chapter 3.3. As mentioned be-
fore, a significant share of mankind’s information is stored in databases. Chapter 3.4
describes two ways to interact with knowledge bases (KB) by either computing a proba-
bility distribution over all entries in the database (soft-KB lookup) or the production of
database queries (hard-KB lookup). Chapter 3.5 distinguishes between relational and
non-relational databases. Since SQL (structured query language) is the main represen-
tative of relational databases, non-relational ones are also known as NoSQL (not only
SQL) databases. Due to the fact that Elasticsearch is one of the most important NoSQL
databases and it has practical relevance at inovex, this thesis implements an Elasticsearch
instance in order to store the KB which is related to the use case. The selection of the use
case and the corresponding dataset will be discussed in Chapter 3.6. Finally, Chapter
3.7 will conclude the state of the art with respect to research question one.

Chapter 4 introduces the methodology of this thesis. First, Chapter 4.1 proposes the
general approach that is used to answer natural language questions with facts from an
external database. Hence, this thesis proposes an attention augmented Seq2Seq model.
Since the database operation breaks the differentiability of the system, two ways of train-
ing are discussed. While training with intermediate labels requires human interaction,
training with policy gradient sustains the end-to-end character. In Chapter 4.2, the
Movie Dialog Dataset (MovieDD) is analyzed. In this context, this thesis extends the
MovieDD by intermediate labels and introduces a reduced training set with 10k exam-
ples. Eventually, Chapter 4.3 presents details of the use case specific implementation.

Chapter 5 provides an answer to the second research question by presenting the results
of the conducted experiments. Firstly, Chapter 5.1 discusses a set of evaluation metrics.
Since this thesis extended the MovieDD by intermediate labels, the quality of those labels
will be analyzed in Chapter 5.2. Afterwards, Chapter 5.3 shows the results that were
achieved by training the model on these question-query pairs. In Chapter 5.4 the results
obtained while training the model on question-answer pairs will be presented. Finally,
Chapter 5.5 compares the outcome of the conducted experiments to the one reported
by Dodge et al. [Dod+15]. While they proposed to perform soft-KB lookup with Memory
Networks, this thesis implements a hard-KB lookup. Thereby, this thesis provides a
comparison of both types of KB interaction on the same dataset.

Finally, Chapter 6 will conclude the presented findings and outline directions for further
research.
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2 Theoretical Foundations

This section deals with the theoretical foundations of this thesis. It starts by presenting
dialog systems as a generic concept that is based on interaction through natural language.
Afterwards, deep learning and reinforcement learning will be introduced due to their
importance for the development of end-to-end dialog systems.

2.1 Dialog Systems

Previously, the potential of digital assistants in the near future was highlighted. This
section provides the underlying concepts of such systems. Since digital assistants have
many synonyms, e.g. conversational agent, dialog system, chatbot or virtual digital as-
sistant, this section will first of all establish a common base in terms of terminology.
Subsequently, the standard pipeline architecture of dialog systems will be presented. This
architecture dominated the field of conversational agents over the last decades. Eventu-
ally, the evolutionary steps in the domain of dialog systems will be shown. In general,
one can distinguish between three generations of dialog systems. Lately, there was a shift
away from the pipeline architecture towards neural network based end-to-end approaches
which represents the third generation of dialog systems.

2.1.1 Terminology

While industry sticks to the phrase digital assistant, research tends to use more pre-
cise terms. The generic concept which describes systems interacting with other agents
(mostly humans) through natural language is defined as dialog system or conversa-
tional agent. The communication between such systems and their human counterpart
is either based on written text, speech or both [JM17]. So while Apple will introduce you
to Siri as your personal assistant, researchers will call it a dialog system. The group of
dialog systems itself can be divided into two subsets according to their objective.

Goal-driven dialog systems have the purpose of gaining information through conver-
sation in order to complete a specific task. Dialogs involving goal-oriented agents are
typically short and domain specific. In general, their performance is related to the degree
of task fulfillment [Ser+15]. This group of agents includes smartphone assistants, like
Siri or Cortana, as well as smart speakers, like Google Home or Amazon Alexa. They
complete tasks like messaging, finding restaurants or giving travel directions [JM17].

Non-goal-driven dialog systems are designed to have extended conversations in open
domains. They are also called chatbots as they mimic the unstructured behavior of
human interaction. Instead of retrieving information their goal is to keep the conversation
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alive. Hence, the agent faces several challenges. On the one hand, the system needs to
keep track of the dialog in order to stay consistent with itself and with the current topic of
the conversation. This is important due to the fact that the agent might need to retrieve
topic specific information. On the other hand, the dialog system needs to decide about
an appropriate response to the users input [Ser+15].

Serban et al. [Ser+15] highlight the potential of commercialization as an important re-
search driver. While goal-oriented dialog systems offer an approach to solve clear problem
settings involving dialog, the utility of non-goal-oriented dialog systems is not that obvi-
ous. Yan et al. [Yan+17] identified a relevant potential in online shopping. They showed
that nearly 80 percent of conversations could be categorized as chit-chat. Still, handling
those messages and keeping the dialog alive was closely related to user experience [Che+17;
Yan+17].

2.1.2 Standard Architecture for Dialog Systems

The interaction between machines and human agents in conversations is a highly complex
problem. The standard architecture for dialog systems tackles this problem by dividing it
into a set of subproblems. Each one is solved by an individual component that forwards
the result to its successor in the process chain. Interaction with the user happens in
real-time. Figure 1 shows the standard architecture.

Figure 1: Standard Pipeline Architecture for Dialog Systems [Ser+15]

The standard architecture is designed as a straight-forward process. Everything starts
with a user utterance. In case of spoken dialog systems, the user will input an au-
dio signal. This signal will be transcribed into a textual hypothesis by the automatic
speech recognition (ASR). Text-based dialog systems only take textual inputs and do
not require an ASR. In the next process step, the natural language understanding
unit (NLU) maps the textual hypothesis into a semantic representation [Ska07]. Table 1
presents an example of a semantic representation for the user utterance: "show restau-
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rants in New York tomorrow". Usually, the semantic representation covers information
about the user intent and word-level information, such as named entities. In the example,
the semantic representation covers three levels of information. The first level is based on
a method called slot-filling. It is applied by different components of dialog systems. The
algorithm associates some of the words of the utterance (values) with slots. For example,
the slot destination is filled with the values New and York, as they represent the first and
last word of the destination. Slot sets can differ depending on the topic. This leads to
the second and third level of the semantic representation. They are defined as intent and
domain [Che+17].

Sentence show restaurants in New York tomorrow
Slot o o o destination destination date
Intent Find Restaurant
Domain Order

Table 1: Example of a Semantic Representation [Che+17]

The NLU outputs the semantic representation to the dialog state tracker (DST). At this
point, the representation is limited to information contained in the current user utterance.
The DST enriches the semantic representation with it’s knowledge of the dialog history
[Ska07]. If the user utterance, presented in Table 1, succeeded another user input, the
semantic representation might be more detailed. Assigning an utterance like: "I love
Japanese food" a time step before the current input would lead to a value in the slot
cuisine type. This is inferred by the DST. The objective of the module is to output a
probability distribution over possible dialog states. After the most likely dialog state is
determined, the dialog response selector derives an action based on the context. This
action is still on a semantic level. In the presented example the dialog system could either
decide to request additional information, such as the number of people or a city district,
or to provide results given the current information. The natural language generator
(NLG) will transform this semantic representation into an utterance in natural language.
In case of text-based dialog systems, the user will receive a written message. Otherwise a
text-to-speech component will generate an audio output [Ser+15].

2.1.3 Evolution of Dialog Systems

The pipeline architecture of dialog systems has been applied in research and practice.
Recent success stories of end-to-end models based on DL challenged the dominating role
of the standard architecture. Hence, this chapter provides a brief summary of the devel-
opments in the field. For a more detailed overview see [Che+17; JM17; Ser+15].
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Literature names ELIZA as one of the first dialog systems in practice [Wei66]. It belongs
to the category of non-goal-driven dialog systems. But in contrast to many other chat-
bots it served a practical purpose. ELIZA was designed to test theories of psychological
counseling. A simple rule-based approach simulated the behavior of a psychotherapist by
rephrasing statements and posing questions. Later work by Colby [Col81] applied another
rule-based approach in a related field. The dialog system PARRY mimicked the behav-
ior of paranoid patients. Both systems belong to the first generation of dialog systems,
which was centered around rules and designed by human engineers. Another example
from this generation is the conversational agent LUNAR. It provided a natural language
interface to a database about moon rocks [Lia16; WKNw72]. This system highlights the
fact that even in 1972 engineers saw a potential in accessing databases through natural
language, instead of using structured queries. This thesis continues their line of research,
but addresses the task with an approach from a succeeding generation of dialog systems.

However, the reliance on human engineers caused the main limitations of rule-based dialog
systems. First of all, their development and deployment was time-consuming and expen-
sive. Furthermore, the know-how of individual engineers could turn into a crucial factor
for maintenance and debugging. Due to this characteristic the application of rule-based
dialog systems was limited to narrow domains [Che+17].

The genesis of the second generation of dialog systems was accompanied by the success-
ful application of statistical methods in several fields of natural language processing. As
a result, statistical approaches either replaced or extended existing rule-based solutions.
Data was now used to learn statistical parameters in dialog systems. The transition from
hand-crafted rules to statistical methods was facilitated by the standard architecture of
dialog systems. Due to the pipeline character the complex task of performing a con-
versation in natural language was divided into simpler subtasks. Especially the NLU
and the DST show typical characteristics of a classification problem. While NLU takes
user utterances as inputs and maps them to semantic representations, the DST outputs
a dialog state based on the semantic representation of the utterance and dialog history.
Conditional random fields and hidden Markov models have been successfully applied in
both units [Che+17]. Gorin, Riccardi and Wright [GRW97] describe the success story
of AT&T. They applied machine learning algorithms to classify free speech problem de-
scriptions in order to allocate operators. Indeed, statistical methods received most of
their attention from academic research, whereas commercial applications were dominated
by dialog systems from the first generation for a long time. This applies especially for
the NLU [Ska07]. Another unit of the standard architecture is more closely related to
reinforcement learning than to classification. Literature also refers to the dialog response
selector as the dialog policy module. This name emphasizes its relation to reinforcement
learning approaches to derive dialog responses. Even today’s dialog systems make use
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of a combination of rule-based agents and reinforcement learning as the dialog response
selector to achieve satisfying performance [Che+17].

While the first generation of conversational agents was easy to interpret and debug,
the second generation was the opposite. Statistical approaches reduced both, the inter-
pretability and debugability. On the other hand, those methods increased the robustness
against noise and ambiguities. But apparently models from the second generation were
not powerful enough to scale up to new domains. Hence, they share a major shortcom-
ing of the first generation. Furthermore, it underlines the lack of success in commercial
implementations [Che+17].

The success of DL (discussed in chapter 2.2) in other fields attracted researchers to in-
vestigate its potential for dialog systems. This represents the starting point of the third
generation of dialog systems. In the beginning, research efforts focused on the implemen-
tation of deep neural networks in order to replace rule-based or statistical components in
the standard architecture. In retrospect, this was a move with an impact on all modules.
Hashemi et al. [HAK16] used a DL approach known from image processing in the NLU.
They applied Convolutional Neural Networks (CNN) to compute a semantic representa-
tion of the input, which was then used to identify the user intent in the NLU. Mrksic
et al. [Mrk+16] as well as Henderson, Thomson and Young [HTY13] proposed different
types of neural belief trackers. Those kind of models are used in the DST. Besides that,
DRL was implemented to predict dialog responses and RNNs showed their potential in
the NLG [Che+17].

Another remarkable impact of DL was the effect on research to relinquish of the standard
pipeline architecture. This allowed end-to-end dialog system architectures to develop,
which show several advantages. First of all, end-to-end dialog systems are able to scale
up to new domains. As such, models are only trained on dialog history; there are no
underlying assumptions about a domain or dialog state structure [BBW17]. Further-
more, they dissolve the credit assignment problem of the pipeline structure. Considering
a standard pipeline system where all components achieve good individual performance
results, it is hard to reason about causalities in the connected pipeline. Instead, end-to-
end systems are composed as a single unit and optimize a single objective function. By
this, they also avoid interdependencies between the different modules which might affect
performance [Che+17]. Despite their advantages, end-to-end models have an increased
demand for training data, as neural networks are known to be data intensive. Hence, the
application of end-to-end dialog systems is limited to problems offering a large amount of
conversational data [Lia16].
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2.2 Deep Learning

This section introduces deep learning (DL). DL is an important discipline in the field of
artificial intelligence (AI). Hence, it will be distinguished from other relevant disciplines
in the domain. Afterwards, artificial neural networks (ANNs) will be defined. They
represent the fundamental concept behind DL. In general, ANNs are composed of small
building blocks called neurons. To gain deeper understanding of ANNs, those blocks will
be explained in a first step. Their design is one of the crucial factors to the performance of
such networks. Later on, it will be discussed how ANNs learn from experience. Eventually,
a group of advanced neural architectures will be introduced.

In the recent past, AI and DL received a lot of media coverage due to use-cases like
autonomous driving, where DL is applied to address subtasks like image-based object
recognition, e.g. to identify pedestrians or traffic lights; system control, like steering or
navigation; or the communication with the driver. Another example which achieved large
attention was a DL implementation by Deep Mind [Sil+16]. Their team built an agent
that learned how to play Go. Go is a highly complex board game, similar to chess. Their
agent was able to beat the world champion in several rounds and thereby continued the
line of success, started with Deep Blue in 1996. Deep Blue was a chess computer designed
by IBM and defeated the reigning world champion in chess, Garry Kasparov [CHH02].

The success of Deep Blue was one of the big milestones in the emerging field of AI. Figure 2
shows how DL is related to AI and some of its sub-disciplines. Artificial intelligence aims to
understand and create machines that think and act intelligent. This definition highlights
a distinction between the reasoning process behind an observed behavior (thinking) and
the observed behavior itself (acting). This distinction is also known as the hypothesis of
weak and strong AI. The weak AI hypothesis focuses on the way a machine acts. It
is satisfied, if a program acts as if it was intelligent. On the other hand, strong AI is
concerned about what machines actually think and how they reason [RN03].

Achievements like Deep Blue belong to the group of weak AI. Even though the system
outperformed a human benchmark it does not mean that this solution is able to adapt
to new problems. The success of weak AI systems is often limited to narrow domains
and their application takes place in isolated environments with a set of formal rules. As
long as the interaction sticks to the formal framework, such agents seem to act intelligent.
But as soon as new patterns arrive or the framework is violated, their behavior becomes
inconsistent or even useless. To achieve strong AI it is necessary that systems overcome
this problem and gain knowledge about their environment [GBC16]. It is the same factor
that counts for humans. A person who is familiar with chess rules is not able to compete
with a chess grandmaster. Although they share the same set of rules defining their
environment, the grandmaster is superior due to his experience.
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Figure 2: Artificial Intelligence and its Sub-Disciplines [GBC16]

Likewise, Machine Learning (ML) integrates the utilization of experience into the field
of AI. Mitchell [Mit97] defines, "a computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P , if its performance
at tasks in T , as measured by P , improves with experience E." According to this for-
mal definition, ML incorporates three important aspects. A simple example from image
recognition will be used to describe these three aspects. Assuming a program receives
pictures that show either a dog or a cat, the task T will be defined as a classification of
specific images to one of the two categories. Typically, the experience E is provided in
form of a dataset where each data point represents an experienced example with a set
of features. Given the classification problem each data point corresponds to a processed
image, whereas the pixels in the image represent its features. Based on this features, the
algorithm will predict class dog or class cat for each picture in the dataset. As each im-
age is associated with a ground truth, the correctness of the prediction can be evaluated.
Hence, the performance measure P will be defined as the accuracy of the predictions in the
dataset. Over time, the program will process a lot of images and receive feedback about
the correctness of its predictions. Based on this experience, it can adjust its behavior.
Typically, ML algorithms are categorized according to their type of feedback. Thereby
one can distinguish three categories: supervised, unsupervised and reinforcement learning
[GBC16].
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In supervised learning each example is associated to a label or target. Such algorithms
aim to learn a hypothesis that allows them to estimate the labels of a data point [GBC16].
The cat and dog classification is a supervised learning problem as the labels of each image
are represented by a string of their ground truth (dog, cat).

In contrast, unsupervised learning algorithms learn patterns in the structure of their
data. There is no label or target indicating to which class a data point belongs. Unsuper-
vised learning involves tasks like clustering, which means to group data points according to
their similarities. A challenge of unsupervised learning is to define appropriate similarity
measures [RN03].

Reinforcement learning is the third category of ML. Like in unsupervised learning
there are no associated labels in the data. Instead, RL agents receive feedback in form of
a numerical reward signal. In contrast to supervised learning, this signal does not specify
how the agent needs to adjust its behavior in order to perform better. So rather than
being told what to do, RL systems learn from feedback signals about their environment
[RN03; SB17].

The performance of ML algorithms depend on the representation of the data. While tra-
ditional methods require pre-processing and feature engineering, there are algorithms that
process raw data directly. This group of algorithm is called representation learning.
As well as traditional methods, such algorithms learn how to map the input data into
outputs. Moreover, they learn concepts that implicitly represent the data and improve
learning [GBC16].

Deep Learning integrates the idea of representation learning into a hierarchical concept.
Such hierarchy starts with low-level representations that identify simple concepts of the
raw data. Combining these simple concepts leads to more complex feature representa-
tions. As the amount of stacked representations increases, more complex problems can
be solved. DL approaches are based on artificial neural networks, which will be described
subsequently [LBH15].

2.2.1 Artificial Neural Networks

ANNs mimic the behavior of the human brain based on small building blocks called
artificial neurons. First attempts to simplify and formally describe the way human brains
work date back to the 1950’s and 1960’s. The McCulloch-Pitts-Neuron was one of the first
works to describe computational signal processing in simplified neurons [MP43]. Later
on, Rosenblatt developed another type of artificial neuron, the Perceptron. It was the
first of its kind to be implemented [Ros58].
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Figure 3: Artificial Neuron [RN03]

Even today’s ANNs make use of the basic principle artificial neuron. Figure 3 shows a
single neuron j that maps the inputs x1, x2, ..., xn and a bias b into a single activation hj.
The mapping function f : Rn → R is constituted by two operations. The first operation
computes the net input netj of the neuron as

netj =
n∑
i=1

wijxi + b, (2.1)

where wij is a weight vector that connects the input xi to the neuron j. In a second step
the activation value hj is computed by

hj = f(x,w, b) = ϕ(netj) = ϕ(
n∑
i=1

wijxi + b), (2.2)

where ϕ(·) is an activation function, which will be discussed in Section 2.2.2. In case of
deterministic neurons, the activation value hj equals the signal that is passed to the next
neuron. In case of stochastic neurons, the activation hj can be seen as the probability
that the neuron is active [RN03].

The composition of multiple artificial neurons results in powerful network structures. One
can distinguish between two different types of network structures. Feedforward networks
are acyclic and information flows from inputs to outputs. In contrast, RNNs have cyclic
connections and maintain information over time. This is achieved by feeding the output
activations back into the neuron and use them as input a time step later [RN03]. RNNs will
be discussed in Section 2.2.4, whereas this section will continue and discuss feedforward
neural networks.
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Figure 4: Deep Feedforward Neural Network with two Hidden Layers

The feedforward network depicted in Figure 4 implements the function f : R2 → R2 to
map the input values x1 and x2 to the output values o1 and o2. The neural network
consists of ten neurons which are grouped into four layers and each layer consists of a
specific number of neurons. Usually a neuron is connected to all neurons of the previous
layer and to all neurons of the subsequent one. If this rule applies for all neurons in the
network, it is called fully connected. The first layer of the network is called input layer and
it contains the values x1 and x2. Incorporating hidden layers into feedforward networks
is the key component to their power. According to the universal approximation theorem
[Cyb89; HSW89] a feedforward network can approximate any continuous function in Rn

given a single hidden layer with enough units [GBC16]. The depicted network is enlarged
by two hidden layers, which contain three hidden units each. While describing a single
neuron, the denotation hj was used to describe the activation value of this neuron j. As
the network structure became more complex, the denotation needs to be adjusted. Let
h

(l)
j be the activation of neuron j ∈ 1, ..., n(l) in hidden layer l ∈ 1, ..., L. The depth L of

the network is defined by its number of hidden layers despite the input layer. In addition,
each layer l is characterized by the number of neurons in this layer, also called width n(l)

of layer l. For reasons of simplicity the weights connecting two layers will be summarized
by a weight matrix W (l) instead of using individual weights on each connection. The
dimensionality of the weight matrix is described by W (l) ∈ Rn(l)×n(l−1) . Moreover, a bias
term b(l) ∈ Rn(l) is used and added prior to the activation [GBC16; RN03].
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As a result one can decompose the mapping function with respect to the chain structure
of the network:

h(1) = f (1)(x,W (1), b(1))

h(2) = f (2)(h(1),W (2), b(2))

o = f (3)(h(2),W (3), b(3)).

(2.3)

During the introduction of DL, the term representation learning was introduced on a
rather abstract level. Artificial neural networks group their neurons layer-wise and each
layer performs a transformation of its inputs. The hidden state h(1) is a low-level repre-
sentation of the input x. Another transformation step in the second layer of the network
yields a representation h(2) constructed from the low-level representation h(1). Speaking
of a representation hierarchy is nothing else than processing an input through multiple
hidden layers. In general, it is hard for humans to interpret representations generated by
ANNs. However, analyzing the activations in feature maps of CNNs reveal this feature hi-
erarchy in image processing. Low-level activations correspond to corners and edges, while
higher activations capture textures or complex patterns like dog faces or legs [ZF14].

2.2.2 Activation Functions and Softmax

This section will acknowledge the impact of activation functions on the performance of
ANNs. Today’s state-of-the-art models make use of different nonlinear activation func-
tions. The choice of the activation function influences the performance and capabilities
of the model. Figure 5 illustrates four different activation functions.

Figure 5: Different Activation Functions
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The sigmoid function represents a standard activation and is defined as

ϕ(x) = σ(x) =
1

1 + exp(−x)
, (2.4)

where exp(·) is the exponential function. The sigmoid function is continuous and converges
to zero if x → −∞ and to one if x → +∞ respectively. Furthermore, it is differentiable
with an easy derivative. Differentiability is an important characteristic with regards to
learning in ANNs. However, the sigmoid function suffers from the vanishing gradient
problem [GBC16], which will be described in Section 2.2.6.

The hyperbolic tangent shares the character and shape of the sigmoid function. But
instead of converging to zero, one respectively, the hyperbolic tangent approaches −1 if
x → −∞ and one if x → +∞. Like the sigmoid function it is continuous, differentiable
and suffers from the vanishing gradient problem [GBC16]. It is defined as

ϕ(x) = tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
. (2.5)

The rectified linear unit (ReLU) was developed to overcome the vanishing gradient prob-
lem. It is defined as a piecewise linear function:

ϕ(x) = ReLU(x) = max(0, x), (2.6)

which is easy to optimize and generalizes well. Especially the fixed gradients for x ≥ 0

and x < 0 reduce the computational effort. However, they suffer from a problem called
dying ReLU. Large weight updates can cause the input x to be smaller than zero. Due
to the fact that ReLUs lack nonzero outputs for x ≤ 0, their gradient signal will be zero
forever and the unit dies. Exponential linear units (ELU) outperform rectified linear units
and overcome the dying ReLU problem [CUH15]. They are defined as

φ(x) = ELU(x) =

exp(x)− 1 x < 0

x x ≥ 0
. (2.7)

Despite these activations there is another important function for ANNs. Softmax is a
function that is able to map discrete variables with n dimensions into the interval between
zero and one. Therefore, it is applied to turn the output of a classifier into a probability
distribution of n classes, as it sums to one [GBC16]. The softmax function is defined as

softmax(u)i =
exp(ui)∑
j exp(uj)

, (2.8)

where u is a vector and i, j are indexes.
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2.2.3 Learning

This section will discuss how ANNs learn. In general, the learning process of neural net-
works is divided into three consecutive steps: forward propagation, backward propagation
and gradient descent. The sequential execution of those three steps constitutes a training
step, also called iteration. Moreover, an iteration over all samples in the training set is
defined as an epoch.

2.2.3.1 Cost Function
Subsequently, a cost function, also called error measure or loss, will be defined in order
to evaluate the goodness of the approximation of an unknown function f : Rn → R. Let
J(θ) denote an arbitrary cost function with respect to

θ = (W, b) = ((W (1), ...,W (L)), (b(1), ..., b(L))), (2.9)

which represents the parameterization of a neural network with a depth of L. Generally
speaking, cost functions are designed to capture the deviation between the ground truth
y and the approximation of this ground truth ŷ = f(x, θ). There is a variety of cost
functions and while working with ANNs, mean squared error and cross-entropy loss (CE)
are the most common ones. This thesis will focus on CE, which is defined as

J(θ) = J(x, y, θ) = −
∑
i

yi log ŷi. (2.10)

CE computes the expected negative log-likelihood between the empirical distribution of
the training data and the distribution of the model [GBC16].

As defined in Section 2.2, an algorithm learns if it improves a performance measure due
to the utilization of experience. Thus, learning in neural networks is an optimization
problem under the objective

min
θ
J(x, y, θ), (2.11)

where the cost function J(x, y, θ) is minimized by adjusting the parameters θ of the
network [RN03].

2.2.3.2 Forward Pass
Forward propagation is the first of three steps to train a neural network. Typically,
experience for ANNs is provided as a set of tuples: {(x(1), y(1)), ..., (x(m), y(m))}. The
dataset contains m examples and a single tuple consists of a n-dimensional input x(i) and
a class label y(i). In this step, the inputs are passed through the different layers of the
neural network in order to compute ŷ(i) = o(i) = f(x(i), θ) [GBC16]. As described in
Section 2.2.1 one can resolve this mapping into a composition of functions, which can be
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executed layer-wise. Figure 6 shows a single neuron which maps the inputs x1, x2 to an
output ŷ = f(x1, x2), which is then used to compute the cost J(x, y, θ).

Figure 6: Forward Pass [Cha+17]

2.2.3.3 Backward Pass
Assuming that every hidden unit of the network is partly responsible for the observed
cost J(θ), the weights of the networks are adjusted based on the share of the cost, for
which they were responsible. Gradients determine the scale and the direction by which the
weights should be adjusted. This leads to the second step in the learning process, which
is called backpropagation. Its breakthrough was achieved by a paper in 1986 [RHW86].
Since then, it has been one of the most important algorithms in the domain of neural
networks [Nie15].

Figure 7: Backward Pass [Cha+17]

Backpropagation processes the error signal from the output layer, layer-wise through the
network until the first layer is reached. First of all, the gradient on the output layer is
computed. Figure 7 shows the gradient of the error with respect to the output ŷ on the
right hand side of the node. Utilizing the chain rule of calculus is the key to propagate
the gradient signal through the node. By this, one can rewrite the downstream gradients
∂J
∂x1

and ∂J
∂x2

as depicted in the illustration. While the first term, ∂J
∂ŷ

is nothing else than
the upstream gradient signal, the second term is called local gradient. The local gradient
does not consider up- or downstream information. For this reason it is computed and
stored during the forward pass. In the backward pass the stored gradient is then used to
compute the gradient of the error signal with respect to x1 and x2. In case of a network
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with multiple layers, these gradients will itself work as the upstream signal for the next
layer towards the input [Cha+17; GBC16].

The backpropagation terminates as soon as the last gradient in the first layer of the
network is computed. As a result, one can formulate the gradient of J(θ) with respect to
all parameters θ in the network:

∇θJ(θ) =


∂J(θ)
∂θ1...
∂J(θ)
∂θn

 . (2.12)

2.2.3.4 Gradient Descent
The final step of a training iteration is gradient descent. In general, gradient descent
updates the parameters of the network based on the gradients computed during back-
propagation. In practice, there are different implementations of gradient descent. Based
on the amount of data they use, one can distinguish between Batch Gradient Descent,
Stochastic Gradient Descent and Mini-Batch Gradient Descent.

Firstly, there is Batch Gradient Descent (BGD). It is the standard form of gradient descent
and performs the parameter update on the entire dataset. The BGD rule to update the
network parameters θ is defined as

θ ← θ − α∇θJ(θ), (2.13)

where α is a learning rate and ∇θJ(θ) is the gradient of the objective function J(θ) with
respect to the parameters θ. Therefore, one epoch in training only takes one weight
update. On the one hand, this is accompanied with slow execution. On the other hand,
BGD is guaranteed to converge to global minima for convex error surfaces and to local
minima for non-convex error surface [Rud16].

In contrast, the Stochastic Gradient Descent (SGD) uses random samples to update the
weights. The SGD update rule is given by

θ ← θ − α∇θJ(θ, x(i), y(i)), (2.14)

where x(i) refers to a single, random training example i and y(i) refers to the corresponding
label. This design allows faster execution and online learning, which means that new
examples can be incorporated into the learning process. However, the stochastic character
impedes convergence since the weight updates show a high variance. One can counteract
this problem with a decreasing learning rate [Rud16].
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Eventually, there is the Mini-Batch Gradient Descent (MBGD), which performs its update
on a set of examples called mini-batch. Thereby, it reduces the variance of parameter
updates and stabilizes convergence. The parameters θ are updated by

θ ← θ − α∇θJ(θ, x(i:i+n), y(i:i+n)), (2.15)

with x(i:i+n) as a mini-batch of n samples and y(i:i+n) as the corresponding labels [Rud16].

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are an advanced neural architecture. They have been
applied to tasks like speech recognition, time series prediction and gesture recognition.
All these tasks share that their inputs contain temporal dependencies. This means that
the current prediction ŷt not only depends on the current input xt, but also on previous
inputs xt−1, ...xt−N [LBH15]:

ŷt = f(xt, xt−1, ..., xt−N , θ). (2.16)

While feedforward networks process their inputs straight through their nodes with no
cycles, RNNs do have cyclic connections. This incorporates a memory capability, which
is required to keep track of previous inputs. There are two ways to illustrate a RNN,
both are depicted in Figure 8. On the left hand side, one can see what is called the folded
model of the RNN. In general, the model consists of an input x, a hidden state h, which
represents the memory, and the output ŷ. This design allows the RNN to perform the
same task for a sequence of inputs. At each time step, the model processes an input xt
and the previous hidden state ht−1 to an output ŷt. The weight matrix Wx connects the
input to the hidden state. Wh represents the weight matrix which connects the hidden
state from the previous time step with the current time step. Furthermore Wy is used to
connect the hidden state with the output [GBC16].

Figure 8: Recurrent Neural Network (Left: Folded - Right: Unfolded into Time) [LBH15]
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Since the inputs are represented as a sequence, it is possible to unfold the RNN into time.
This is depicted on the right hand side of Figure 8. One can see that at time step t,
the hidden state ht depends on two inputs, the event xt the previous hidden state ht−1.
The previous hidden state itself is conditioned on the event xt−1 and hidden state ht−2.
Furthermore, the unfolded view reveals that the weight matrices are shared over time
[GBC16].

Despite the different design, RNNs work in a similar way like feedforward neural network.
Assuming that the model is in time step t, it receives the input xt and the previous hidden
state ht−1. The current hidden state ht is computed by

ht = tanh(Whht−1 +Wxxt + b1), (2.17)

where a nonlinear activation is applied on the weighted sum of the inputs xt, ht−1 and
the bias b1 [GBC16]. The output ŷt can be obtained by applying softmax on a linear
transformation of the hidden state ht:

ŷt = softmax(Wyht + b2). (2.18)

The training procedure of RNNs builds upon the same three steps as the training of
feedforward networks. In the forward pass, the RNN computes an output sequence ŷ
based on the input sequence x and an initial hidden state h0. Since RNNs share their
weights over time, the backward pass is implemented by backpropagation through time
(BPTT), which is a generalization of backpropagation[Wer90]. Finally weight updates
are performed by gradient descent as discussed in the previous section [GBC16].

However, BPTT can cause the gradients to either grow exponentially or to vanish. This
results in unstable learning and the fact that RNNs cannot capture dependencies in longer
sequences [Sal+18]. This problem will be discussed in Section 2.2.6.

2.2.5 Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTM) are designed to avoid the shortcomings of
standard RNNs. Hochreiter and Schmidhuber [HS97] proposed the LSTM in 1997. During
their path through time their gradients will less likely vanish or explode. This is achieved
by connecting weights which work as gates. In particular, those gates enable the LSTM to
process information in a long- and a short-term memory [Sal+18]. Since the terminology
varies through different resources this section will stick to the state of implementation in
Pytorch 0.3.0.

Figure 9 shows the comparison of a RNN and an LSTM unit at time step t. The RNN
processes two inputs. On the one hand, the unit takes the information about the event
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Figure 9: RNN and LSTM

xt. On the other hand, the hidden state of the previous time step ht−1 is fed into the unit.
Both inputs are processed through a non-linear transformation resulting in the current
hidden state ht. This one is used to compute the output ŷt. Furthermore, it is forwarded
to the unit at t+ 1 in order to update it [GBC16].

In contrast, LSTMs takes three inputs. Like the RNN unit, the LSTM takes the event
xt as an input. But instead of using only one representation of the memory, the LSTM
uses two. While the hidden state ht−1 represents the short-term memory, the cell state
ct−1 represents the long-term memory. By processing the inputs through a set of non-
linear transformations the LSTM unit updates the cell state ct and the hidden state
ht. Furthermore, the short-term memory ht is used to predict the output ŷ [GBC16].
Subsequently, this section will discuss how the LSTM processes its inputs.

Generally speaking, an LSTM cell consists of three gates (input, forget and output gate)
and the cell state. Each component fulfills a specific task. One can imagine a gate, as a
weight which is scaled between zero and one. A closed gate will have a value close to zero
and will let no information pass through. However an open gate will let information pass
and contain a value close to one [Sal+18].

2.2.5.1 Cell State
The cell state ct represents the long-term memory. At each time step, a new cell state is
computed by

ct = ft ◦ ct−1︸ ︷︷ ︸
forget gate

+ it ◦ c̃t︸ ︷︷ ︸
input gate

, (2.19)

where ft ◦ ct−1 represents the output of the forget gate and it ◦ c̃t refers to the output of
the input gate. The forget gate determines, how much of the information of the long-term
memory ct−1 will stay in the long-term memory in t. This is achieved by the forget factor
ft. If it is close to one, the long-term memory will keep almost everything it stored in
t− 1. If it is close to zero, the LSTM will forget things stored in the long-term memory.
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The input gate decides how much new information will find its way into the long-term
memory. The input factor it works as the gate which decides whether information from a
new cell state c̃t, just based on short-term information, will enter the long-term memory
ct or not. Again, a value near zero means that nearly no information passes the gate.
Whereas a value close to one means that most of the information flows through. The cell
state is crucial to the performance of the LSTM [Ola15].

2.2.5.2 Forget Gate
During the update of the cell state ct, the forget gate takes the previous cell-state ct−1

and weights it with the forget factor ft. This forget factor is computed by

ft = σ(Wxfxt +Whfht−1 + bf ), (2.20)

where the previous hidden state ht−1 is multiplied with a weight matrixWhf and the event
information xt is multiplied with another weight matrixWxf . The sum of both products in
addition to a bias bf is then fed into a sigmoid function. Both inputs contain information
of short-term relevance. If there is a positive relation with the long-term memory, the
LSTM will keep such memories. The matrices Wxf ,Whf and the bias bf belong to the
forget gate only and are learned during training. The forget gate was introduced as an
extension to the first version of LSTM [GSC99].

2.2.5.3 Input Gate
The input gate is responsible to decide which parts of the short-term information are
relevant for the future. The short-term information consists of the short-term memory in
form of the hidden state ht−1 and the current event xt. Both information are combined
into the input factor:

it = σ(Wxixt +Whiht−1 + bi), (2.21)

with bi as a bias and Wxi, Whi as weight matrices that are learned during training.
Furthermore, the short-term information is combined to a new cell state c̃t:

c̃t = tanh(Wxcxt +Whcht−1 + bc), (2.22)

where the weight matrices Wxc, Whc and the bias bc are learned during training [GBC16;
Ola15].

2.2.5.4 Output Gate
Eventually, this section introduces the output gate, which is responsible to update the
hidden state from ht−1 to ht. Therefore, an output factor is computed by

ot = σ(Wxoxt +Whoht−1 + bo), (2.23)
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where Wxo,Who represent weight matrices and bo is a bias. These parameters are learned
during training. Afterwards, the output factor is used in order to compute the updated
hidden state:

ht = ot ◦ tanh(ct). (2.24)

This means that the output gate decides which informations in the long-term memory are
relevant in the near future. The output ŷt is produced by an additional linear transfor-
mation:

ŷt = Wyht + by, (2.25)

whereWy is a weight matrix and by is a bias. Both parameters are learned during training.
Finally, the unit passes the updated hidden state ht and cell state ct to the next time step
[GBC16; Ola15]

2.2.5.5 The LSTM Big Picture
LSTMs are an approach that overcomes the vanishing gradient problem. They have shown
promising results in various domains like translation, voice recognition [GMH13] or image
captioning [Xu+15]. Figure 10 shows an LSTM cell, which implements the different gates
and the cell states as discussed before.

Figure 10: LSTM Unit [Ola15]

Henceforth, this thesis will denote the update of the hidden state by

ht = LSTM(xt, ht−1). (2.26)

This simplified rule represents an abstract summary of the interactions within an LSTM
cell. The update of the cell state is implicitly performed according to the previous expla-
nations.

Despite their potential to capture long-term dependencies, LSTMs dramatically increase
the computational cost of a model. Since the introduction of LSTMs, there have been at-
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tempts to outweigh this disadvantage. The Gated Recurrent Unit (GRU) by Cho [Cho+14]
simplifies the LSTM architecture. It reduces the number of gates, by combining the input
and the forget gate to a so called update gate. Furthermore, it only uses one represen-
tation of the memory, named working memory, which makes GRUs less computational
expensive [Cho+14].

Since their introduction, several adjustments have extended the standard LSTM archi-
tecture. In this context, Greff provides an analysis of different LSTM variants [Gre+17].
Especially, peephole connections gained a lot of attention. They increase the influence
of the cell state by taking it into account while computing the gate factors: ft, it and ot
[GS00].

2.2.5.6 Bidirectional LSTMs
Bidirectional LSTMs build upon the standard LSTM architecture. However, their de-
sign realizes the basic idea to present each training sequence x = x1, ..., xT forward and
backward to the network. This is achieved due to two separate hidden layers which are
connected to the same output layer [GS05]. While the forward layer processes the in-
puts from x1 to xT , the backward layer processes the sequence the other way around:
xT to x1. As a result, one can observe the forward hidden state

−→
h t and the backward

hidden state
←−
h t. One can compute the output ŷt by

ŷt = W−→
h y

−→
h t +W←−

h y

←−
h t + by, (2.27)

where W−→
h y

and W←−
h y

are weight matrices, whereas by is a bias [GJM13].

2.2.5.7 Deep LSTMs
Deep LSTM architectures can be created by stacking several LSTM layers on top of each
other. Assuming an architecture with L hidden layers, one can generalize the update rule
to [GJM13]:

h
(l)
t = LSTM(h

(l−1)
t , h

(l)
t−1). (2.28)

By this adjustment, the hidden layer h(l−1)
t is fed into the LSTM cell at layer l. The

original input sequence is defined as h(0) = x. Note that for a bidirectional LSTM, all
gates and the cell state are defined twice, once for the forward pass and a second time
for the backward pass. Furthermore, the output of the network is computed based on the
forward and backward hidden state of the last hidden layer L [GJM13]:

ŷt = W−→
h y

−→
h

(L)
t +W←−

h y

←−
h

(L)
t + by. (2.29)
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Figure 11 illustrates a deep bidirectional LSTM with two stacked hidden layers. Both
hidden layers contain a separate forward and backward layer. At the first hidden layer,
the forward pass reads the input sequence from x1 to xT , whereas the backward pass
reads the sequence the other way around. The forward layer 1 passes its hidden layer
state

−→
h

(1)
t to the forward layer 2. In addition with

−→
h

(2)
t−1 it is used to update

−→
h

(2)
t , −→c (2)

t

respectively. For reasons of simplicity, the visualization only shows the hidden layer states.
However, during training, all gates and the cell state are computed as discussed before.
Furthermore, one can see that the output ŷt is conditioned on the hidden state of the
second hidden layer at time step t:

−→
h

(2)
t and

←−
h

(2)
t .

Figure 11: Deep Bidirectional LSTM [GJM13]

2.2.6 Challenges

This section presents challenges for machine learning algorithms in general and RNNs in
particular. While the capability to generalize on unseen data is a challenge that many
algorithms face, the vanishing and exploding gradient problem is mainly faced by RNNs.

2.2.6.1 Generalization
One of the key challenges in machine learning is to develop a model architecture that
generalizes. Generalization is the ability of a model to perform well on new, unseen
examples. Therefore, one typically divides the available dataset into three separate splits:
training set, validation set and test set. While the training set is used to train the model
and adjust the parameters, the test set is used to evaluate the final performance of the
trained model. The validation set is used to adjust the hyperparameter settings. Figure 12
shows the trade-off between the capacity of the model and the error curves on the training
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set and the generalization error. In order to achieve a good generalization, one should aim
to reduce the training error itself, as well as the gap between training and generalization
error. As long as both error functions are decreasing, the model is underfitting. This
means, the model is not able to represent the data sufficiently. After the model reached
the optimal capacity, the training error decreases further, whereas the generalization error
starts to increase. This is called the regime of overfitting. At this point, the model starts
to memorize the input data, instead of using an generalized approximation. Techniques
which aim to prevent overfitting are called regularization methods [GBC16].

Figure 12: Trade-off between Model Capacity and Error [GBC16]

Dropout is a method which favors regularization in ANNs. It was proposed by Srivastava
et al. [Sri+14]. One can imagine dropout as a technique to train a group of sub-networks
of the original one. The algorithm mutes non-output neurons with a specified probability.
In each iteration another set of neurons will be removed from the network and reactivated
after the epoch. Thus, the remaining neurons of the network need to be adjusted in a way
that they will capture the information of the "lost" neuron in the future. The network
will generalize better over time. Dropout is computationally inexpensive and it works
nearly everywhere where gradient descent is applied. A disadvantage of dropout is that it
reduces the effective capacity of a model. Therefore the model size needs to be increased
[GBC16].

Another common regularization method is early stopping. This methodology uses the
validation set in order to figure out at which point the generalization error starts to
increase while the training error still decreases. In other words, it detects the time when
the model starts to overfit. Typically, this is achieved by evaluating the generalization
error every n epochs. If the validation error does not decrease during a predefined patience
p, the training process is stopped. Early stopping is a popular regularization method due
to its simplicity and effectiveness. Further regularization methods are e.g. weight decay,
input noise or weight noise [GBC16].
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2.2.6.2 Vanishing and Exploding Gradients
The family of recurrent neural architectures suffer from a phenomenon connected to their
application of BPTT to update their weights. Literature refers to this problem as van-
ishing and exploding gradient problem [BSF94; Hoc91; Hoc+01].

The vanishing gradient problem makes it hard for RNNs to keep track of dependencies
for longer sequences. This is caused by the interdependence of two effects. First, the
standard nonlinear functions used in RNNs are tanh- and sigmoid-activations. Both acti-
vation functions saturate and therefore have gradients close to zero. Second, to learn the
weights in the recurrent structure of RNNs, BPTT is applied. BPTT performs multiple
multiplications of the gradients, which lets them converge to zero. This means that the
magnitude of long-term dependencies is exponentially smaller than the one of short-term
dependencies. As a result, it is hard to update the weights, as the direction of parameter
adjustments becomes blurred [GBC16; Sal+18]. In section 2.2.5 long short-term memory
networks were introduced as an approach that overcomes the vanishing gradient problem.

The exploding gradient problem causes the gradients of the network to blow up ex-
ponentially and leads to oscillating weights [Hoc+01]. Gradient clipping is an approach
which was introduced to avoid this phenomenon. There are various forms of gradient clip-
ping, but in general it can be described as a normlization of the gradient, if the gradient
exceeds a certain treshold [Sal+18]. E.g. Mikolov [Mik12] proposed to clip the parame-
ters of a mini-batch element-wise before the parameter. Later on, this idea was extended
by Pascanu, Mikolov and Bengio [PMB13], which clipped the norm of the gradient. In
theory, their approach had the advantage that it guarantees to maintain an update in the
gradient direction. However, in practice both approaches worked similar [GBC16].

2.3 Reinforcement Learning

Reinforcement Learning (RL) is based on the paradigm of trial-and-error learning known
from psychology. An agent gains knowledge through interaction with its environment and
adjusts its behavior with respect to feedback signals. In general, problems that show the
characteristic of sequential decision making can be tackled with RL methods [Aru+17].
Literature provides many examples showing the variability of RL applications through
multiple domains. In robotics, for example, RL models are applied to enable machines
to learn from human demonstration [Arg+09]. First contributions in this field treated
problems such as balancing an inverted pendulum on a cart [MC68]. The implementation
of Temporal Difference learning on Backgammon in 1992 was a milestone of RL in gaming
[Tes92]. Lately, researchers of DeepMind were able to achieve superhuman performance
in Atari video games [Mni+13; Mni+15] and beat the World Champion in Go with a RL
model [Sil+16].
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Figure 13: Interaction between an Agent and its Environment [SB17]

The interaction between the agent and its environment is depicted in Figure 13. At each
time step t ∈ {0, 1, 2, ..., T} the agent receives a signal about the current state St and
deduces an action At according to some internal strategy, also called policy π(At|St).
This action will lead to a new state St+1 of the environment and is rewarded with a
numerical feedback Rt+1. This feedback signal indicates how good the previously chosen
action was. In the next iteration, the agents will choose its action based on the new state
St+1. The interactions between agent and environment result in a sequence of state-action
pairs with associated rewards, also called trajectory τ which is defined by [SB17]

τ = (S0, A0, R1), (S1, A1, R2), ..., (ST−1, AT−1, RT ). (2.30)

The following section introduces the Markov decision process (MDP) which is used to
give a formal description of the RL environment. Afterwards, further elements of RL
are set into context. Subsequently, a distinction between three different categories of RL
models will be presented and policy gradient will be introduced as the method applied in
this thesis. Finally, some remarks on typical challenges in reinforcement learning will be
presented.

2.3.1 Markov Decision Process

Generally speaking, models allow to represent problems in a simplified version due to a
set of well defined rules. RL uses Markov Decision Processes to achieve such simplification
and describe the environment with the tupleM = (S,A,P ,R, γ):

• S is a set of states. The initial state s0 is sampled from S.

• A is a set of actions.

• P is a state transition probability distribution, Pass′ = P[St+1 = s′|St = s, At = a].

• R is set of reward functions, which maps S ×A → R.

• γ is a discount factor, γ ∈ [0, 1]
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The key characteristic of MDPs is that they satisfy the Markov Property. According to
this property the current state captures all relevant information in the system. Which
means their transitions only depend on the current state and not on the past: P[St+1|St] =

P[St+1|S1, ..., St] [SB17].

2.3.2 Further Definitions

During the interaction with the environment, the agent follows the objective to learn a
policy which maximizes the expected cumulative rewards. As a result, the agent is able
to ignore immediate rewards to achieve higher rewards in the long run. The return Gt at
time step t is defined as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
T∑
k=0

γkRt+k+1, (2.31)

where Rt is the reward at time step t and γ is a discount factor. If the discount factor
γ is close to 0, the agent acts myopic and is more concerned about immediate rewards.
If γ is close to 1, the agent will also consider future rewards. In case of episodic tasks
it is likely to choose γ = 1, as such tasks are only rewarded after an episode finished.
Alternatively, one can take T = ∞ to cover MDPs over infinite sequences. For those
tasks it is important that γ < 1 in order to guarantee convergence.

After the agents objective was defined, this section will continue and discuss the terms
policies and value-functions. Both help the agent to achieve its goal and maximize the
expected return. In general, a policy defines the way an agent behaves in a certain state.
This work will focus on stochastic policies. A stochastic policy maps the current state to
a probability distribution over possible actions and than samples an action according to
this distribution: a ∼ π(s, a) = P

[
At = a|St = s

]
. As the agent gains experience over

time it will adjust its policy in order to improve its expected return.

Given the agent is currently in state s, the state-value function vπ is defined as

vπ(s) = Eπ
[
Gt|St = s

]
= E

[
∞∑
k=0

γkRt+k+1|St = s

]
,∀s ∈ S, (2.32)

where it equals the expected return, assuming the agent will only follow policy π in the
future.

The action-value qπ is defined similarly. It assumes the agent in state s, will take action
a and follow policy π in the future:

qπ(s, a) = Eπ
[
Gt|St = s, At = a

]
= E

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
. (2.33)
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As shown in Sutton and Barto [SB17], one can rewrite the state-value or action-value
function, which results in a recursive relationship. This relationship describes the relation
between the value of a state and the value of the subsequent state. Equation 2.34 shows the
derivation of this recursive relationship. The final expression is called Bellman equation
for vπ. The same logic applies in order to rewrite the Bellman equation for qπ. Due to its
non-linearity and recursive character, there are many approaches that solve the Bellman
equation iteratively.

vπ(s) = E
[
Gt|St = s

]
= E

[
Rt+1 + γGt+1|St = s

]
= E

[
Rt+1 + γvπ(St+1)|St = s

]
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

]
,∀s ∈ S

(2.34)

Since the objective of the agent is to maximize the expected return in a MDP, the optimal
value function yields the maximum value over all policies. This applies for both, the
optimal state-value v∗(s) and the optimal action-value q∗(s, a):

v∗(s) = max
π

vπ(s)

q∗(s, a) = max
π

qπ(s, a).
(2.35)

Moreover one can define an optimal policy π∗. The expected return of an optimal policy
is greater than or at least equal to the expected return of all other policies. An optimal
policy satisfies π ≥ π′ if and only if vπ(s) ≥ vπ′(s) for all s ∈ S [SB17].

2.3.3 Three Classes of RL-algorithms

While the previous section introduced the terminology of RL, this section will distinguish
between different kind of RL problems in order to introduce the group of algorithms which
is relevant to this work.

The pool of RL algorithms offers several possibilities to group them in different ways.
A popular way to do so, is illustrated in Figure 14. On the one hand side there are
algorithms which are given a state or state-action pair and compute the corresponding
value function or an estimate of it. On the other hand there are methods which directly
search for a policy. Most likely, those methods rely on a parameterized policy πθ. Besides
those two categories there is a hybrid which combines value functions and policy search.
Such models are called actor-critic methods based on the simulated interlude between an
actor, which represents the policy, and a critic, which gives feedback by its value function.
In contrast to other baseline approaches for policy search, the value function of the critic
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is actually learned. This fact leads to more powerful models [Aru+17]. Which category
one should favor depends on the individual problem settings. Concepts of all three classes
have shown their potential in application.

Figure 14: Value Function vs. Policy-Based RL [Sil15]

2.3.3.1 Value-based Methods
This section will provide insights into the class of value-based methods. For this purpose,
the concepts of model-based and model-free reinforcement learning will be distinguished.
In a model-based environment, an agent can estimate how the environment will change
given the agents actions. The model allows him to predict the next state and the next
reward given the current state and an action. Settings which involve an model-based
method are also called planning problems. In such situations, one can compute an optimal
solution before an action is actually taken. The group of model-based algorithms include
heuristic search and dynamic program methods, like value iteration or policy iteration
[SB17]. Since the latter settings are not part of the primary focus of this study, they will
not be discussed further.

In contrast to mode-based methods, model-free approaches have no intuition how the
environment will change in response to an action. Such models follow paradigm of trial-
and-error learning through interaction with the environment. Common model-free algo-
rithms are Monte Carlo (MC) and Temporal Difference (TD) methods. Both approaches
incorporate the capability to learn from experience. Therefore, both methods use an ap-
proximation V of vπ, Q of qπ respectively. As soon as the agent gains experience when
following policy π both methods will update their estimate based on a target value Y and a
step-size parameter α. A generalized form of update rules for state-value and action-value
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function estimators is provided below [Aru+17]:

V (St)← V (St) + α
[
Y − V (St)

]
Q(St, At)← Q(St, At) + α

[
Y −Q(St, At)

]
.

(2.36)

The main difference between both methods is how they define their target value and how
this affects the update of the estimator. Monte Carlo methods rely on the actual return as
their target Y = Gt. This means that they need to wait until a terminal state is reached
and the return is known. Such tasks are also called episodic tasks. For this reason, the
experience of MC methods is split up into an episode-to-episode sense. They are not able
to learn step-by-step (action-by-action). Such is also called off-policy learning [SB17].

While MC methods need to wait until the end of an episode, TD methods only need to
wait until the next step. Instead of updating their estimates based on the actual return,
TD methods update their estimates based on other learned estimates. This concept is
known as bootstrapping. The state-action-reward-state-action (SARSA) algorithm and
Q-learning are methods which actually implement the idea of TD learning. Instead of
approximation the state-value function vπ, both algorithms determine Q as an estimate
of qπ. SARSA is an on-policy learning algorithm which uses transitions generated in the
episode and sets its target Y = Rt + γQ(St+1, At+1). Q-Learning instead, is an off-policy
learner and uses an approximation of q∗ as its target: Y = Rt+γmaxaQ(St, a) [Aru+17].

In order to learn the value function of a RL problem, the agent needs to keep track of
the impact of its actions in a certain state. In smaller MDPs it is sufficient to store the
corresponding samples in a lookup table. But as soon as the state-action space becomes
larger, this leads to an problem regarding the efficiency and time to convergence [RN03].

Function approximators are an approach to escape this limitation and introduce gen-
eralization into RL. Instead of a tabular approach, function approximators provide an
estimation based on their parametrization. Over time, their parameters are adjusted in
order to match the observed samples [RN03]. During the motivation of RL the example
of TD-Gammon, which mastered the game of Backgammon, was mentioned. Indeed, it
was an early success of using neural networks for function approximation [Tes92]. Mnih
et al. [Mni+15] used Convolutional Neural Networks to approximate the Qπ(s, a) of state-
action pairs in a video game. The network directly learned from the visual interface of
the game. A tabular representation of the space-action space would have had a size of
|S| · |A| = 18 ·2563·210·160 [Aru+17]. By using a function approximaton q̂(s, a, θ) ≈ qπ(s, a),
they were able to reduce the complexity to the dimensionality of θ and the effort to update
those parameters.
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2.3.3.2 Policy-based Methods
So far, algorithms aimed to either compute or estimate the state-value or the action-value
of a RL problem. A policy was derived from the value function. However, policy-based
methods directly search for a policy instead of taking an intermediate step to determine a
value function. That is why policy-based methods are also called policy search algorithms.
Typically, this is achieved by a parameterized policy πθ. The objective of policy-based
methods is to maximize the expected return given a parameterization E

[
G|θ
]
. ANNs are

a likely choice to encode a parameterized policy. There have been successful approaches
to train them with gradient-free and gradient-based methods.

Gradient-free methods require a search heuristic on a set of predefined class models.
Therefore they are mainly applied to low-dimensional parameter spaces [Aru+17]. Koutnik
et al. [Kou+13] investigated on the capabilities of evolutionary algorithms instead of
using backpropagation. Their work is an example of gradient-free training and relies
on a population of RL agents. Such tend to have a natural behavior which favors the
exploration of the parameter space. Furthermore, they have the advantage be able to
optimize non-differentiable problems [Aru+17].

On the other hand, there are gradient-based methods. Subsequently, the focus will be on
gradient-based learning for stochastic policies. Such policies can be written as π(a|s, θ) =

P
[
At = a|St = s, θt = θ

]
. In a discrete action space one can compute a stochastic

policy based on numerical preferences h(s, a, θ) ∈ R. The softmax distribution allows
to transform the outputs of a neural network into a probability distribution which can
represents a stochastic policy:

π(a|s, θ) =
exp(h(s, a, θ))∑
b exp(h(s, b, θ))

, (2.37)

where h(s, a, θ) is a numerical preference. This transformation assigns the highest numer-
ical preference in each state to the highest probability of being selection. By this, the
softmax transformation maintains the order of the elements [SB17]:

Policy-based methods follow the objective to maximize the expected return Gt by identi-
fying an optimal parameterization of a policy. Accordingly, the cost function J(θ) intro-
duced in section 2.2.3 will be used to evaluate the parameterization and the policy. For
an episodic task, this measure is defined as

J(θ) = vπθ(S0) = Eθ
[
Gt

]
, (2.38)

where vπθ(S0) is the value of the initial state of an episode. This group of algorithms
makes use of the learning signal provided by gradients. The parameterization of the
neural network will be updated by

θt+1 = θt + α∇θt Ĵ(θt), (2.39)
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where ∇θĴ(θ) is the gradient of the cost function and α is a learning rate [SB17]. The
challenge of gradient-based policy search is how to estimate the gradient of the perfor-
mance measure with respect to the parameterization. Fortunately, the policy gradient
theorem solves this challenge [Sut+99]. Based on the assumption that the gradient of the
cost function equals the gradient of the true value function of the parameterized policy,
it can be shown that:

∇J(θ) = ∇vπ(S0)

= Eπ

[
Gt∇θ log π(At|St, θ)

]
.

(2.40)

Appendix A.1 provides an excerpt of the proof of the policy gradient theorem. The
gradient of the cost function is now described as the expectation of the return at time
step t times the gradient of the log probability that an action is selected based on a state
st and the parameterization θ. The REINFORCE algorithm [Wil92] makes use of this
identity to update its parameterization by

θt+1 = θt + αγtGt∇θ log π(At|St, θ), (2.41)

where α is a learning rate, γ is a discount factor and π(At|St, θ) is a stochastic policy.
Algorithm 1 shows the usage of this update rule in the pseudo-code of the REINFORCE
algorithm.

Algorithm 1: REINFORCE algorithm [SB17]

1 function REINFORCE (π(a|s, θ)) :

Input: a differentiable policy parameterization π(a|s, θ),∀A, St ∈ S, θ ∈ Rd′

Local Variables: G as the return between t and the end of the episode.
2 Initialize policy parameter θ
3 repeat
4 Generate an episode S0, A0, R1, ...ST−1, AT−1, RT , following π(·|·, θ)
5 foreach step t = 0, ..., T − 1 of the episode do
6 G←

∑T
t′=tRt′

7 θ ← θ + αγtG∇θ log π(At|St, θ)

A likely extension of the REINFORCE algorithm in terms of generalization is to substract
a baseline b(St) from the return Gt. Baselines reduce the variance of the gradient and are
unbiased. One can use an arbitrary baseline, as long as they do not vary with a [SB17].
The adjusted update rule is given by

θt+1 = θt + αγt(Gt − b(St))∇θ log π(At|St, θ). (2.42)
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2.3.3.3 Actor-Critic Methods

One of the main challenges of policy-based methods is to evaluate the goodness of a
policy. Actor-Critic methods represent a solution to this problem. They are designed as
an interactive process between an actor and a critic (Figure 15).

Figure 15: Actor-Critic Set-Up [Aru+17]

The actor is represented by a policy-estimator and will choose an action according to
the current state st and its internal policy πθ. After an action At was executed by the
agent, the environment provides a new state St+1 and a reward signal Rt+1 to the critic.
The critic is defined by an approximated value function q̂w, which is used to evaluate the
actors action: q̂(St, At, w). As soon as this q-value is given to the actor, it will update
its parameterized policy. In a next step, the actor produces an action At+1. Finally,
the critic updates its own value function based on q̂(St, At, w) and q̂(St+1, At+1, w). This
procedure is repeated in every iteration. Therefore, actor-critic methods feature online
learning. Compared to policy-gradient methods with baselines this is a big achievement
[Aru+17; SB17].

2.3.4 Challenges

The main challenges for RL agents arise from their limited knowledge about the environ-
ment in combination with the objective to maximize cumulated rewards over time. The
only way to gather information is to interact with the environment by choosing actions.
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2.3.4.1 Exploration-Exploitation Dilemma
In order to gather information, agents need to perform non-optimal actions to explore
their environment. This behavior assumes that renouncing on short-term rewards might
lead to increased rewards in the long run. In contrast, one can describe exploitation
as a greedy behavior which maximizes the rewards based on current information. The
resulting conflict is known as the exploration-exploitation dilemma and balancing the
trade-off between both is a fundamental challenge for RL agents [KLM96; SB17].

There are different ways to foster exploration. A naive approach which is typically applied
in Q-learning is ε-greedy. Most of the time, the algorithm exploits its environment by se-
lecting the action which corresponds to the highest Q-value. However, with a probability
of ε, the model performs a random action and explores the environment [SB17]. In con-
trast, count-based exploration methods implement an approach that provides incentives
to explore regions of high uncertainty [Aru+17; LR85].

2.3.4.2 Credit Assignment Problem
Especially in episodic tasks, RL agents face the problem that rewards materialize delayed
after many interactions with the environment. Hence, learning is impeded since the effect
of specific actions is blurred. This problem is known as the credit assignment problem
[KLM96]. One can consider an episodic game, like e.g. chess. A RL agent would receive
a positive reward signal if it wins the game by checkmating the other agents king. If
the game results in a draw or loss, the agent would receive a neutral or negative reward.
Typically, it takes many moves to end a chess game if the players are on a comparable
level. Accordingly, the rewards that RL agents can observe are very sparse and it is
unclear which move was the crucial one that decided between win or loss. It is even more
likely that the interdependence of multiple moves caused the outcome of the game.

2.3.4.3 Sample Inefficiency
A problem that results from the credit assignment problem and sparse rewards is the
sample inefficiency of RL problems. In order to gain actual insights and learn patterns
from their environment, agents have to interact with their environment many times. Irpan
[Irp18] highlights this problem on the example of the application of DQN architectures
in Atari games. State-of-the-art architectures require more than 83 hours of play experi-
ence, which equals about 18 million observed frames, to achieve human-like performance.
However, humans master this game in a few minutes [Irp18].

Sample inefficiency is a barrier that limits the application of deep reinforcement learning
to use-cases, where computation time is no crucial parameter and the cost to generate
experience is low. Games represent one of the few use-cases that satisfy this constraint.
Due to techniques like self-play models are able to create experience based on a set of
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rules and simple instructions. However, self-play is no novelty, already Tesauro [Tes92]
used it to train TD-Gammon. Recent work of Silver et al. [Sil+16] applied self-play to
train AlphaGo Zero.
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3 State-of-the-Art

This chapter will provide the state-of-the-art in the domain of end-to-end dialog systems.
As mentioned in Section 2.1.3, the third generation of dialog systems is centered around
advanced neural networks architectures. Such state-of-the-art models typically build upon
a four step framework: embed, encode, attend and predict [Hon16].

First, Seq2Seq models will be introduced as the core component of the framework. Later
on, the section will explain the additional concepts, word embeddings and attention mech-
anisms, which are required to perform step one and three of the framework. Both concepts
represent extensions to the standard Seq2Seq model. While this chapter focuses on the
introduction of the underlying concepts of the framework, Chapter 4 will discuss how the
different components of the framework work together in this thesis.

In addition to the remarks on the embed, encode, attend and predict framework, this
section will provide an overview about the interaction between dialog systems and external
knowledge bases. Finally, the selection of an appropriate dataset will be discussed.

3.1 Sequence-to-Sequence Models

Seq2Seq models are an architecture which solves a limitation of ANNs while working
with sequential data. Due to their design, neural networks require inputs and outputs to
have a fixed dimensionality. However, sequence tasks like machine translation or speech
recognition are problems where sequence length is not known a-priori. Seq2Seq models
employ RNNs to overcome this limitation [SVL14].

Figure 16: Seq2Seq Model [Cho+14]

Cho et al. [Cho+14] proposed an encoder-decoder design that consists of two RNNs
(Figure 16) and applied it to translate from English to French. The first RNN processes
an input sequence into a continuous representation, also called thought vector. While
the input sequence can be of variable length, the size of the thought vector is fixed. One
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can think of this representation as a summary of the input, which preserves semantic and
syntactic information. As soon as the first RNN terminates to read the input sequence,
the thought vector is passed to the second RNN. This starts working based on a special
start-of-sequence symbol (SOS). Given the fixed-size thought vector, the decoder RNN
will generate an output sequence of variable length. The outputs predicted at time step
t are fed back into the model at t+ 1. The decoder terminates as soon as it predicts the
end-of-sequence symbol (EOS) [Cho+14].

Sutskever et al. [SVL14] combine the encoder-decoder approach with the usage of LSTM-
cells in a deep architecture. Like Cho et al. [Cho+14], they chose a machine translation
task. Their model was the first pure neural translation system to outperform a statistical
machine translation baseline significantly. However, this success comes at high compu-
tational costs. An implementation of their Seq2Seq model with four hidden layers, 1000
cells in each layer, was trained on 12 million sentences. It took eight GPUs ten days of
training time. This equals a translation rate of 6,300 words per second [SVL14]. This ex-
ample highlights that neural architectures are indeed powerful models, but the success of
their employment is accompanied by the availability of large amounts of data in addition
to massive computational ressources.

3.2 Word Embeddings

The application of neural methods in natural language tasks requires a transformation of
words into a numerical representation. Traditionally, this transformation yields a discrete
representation, where every word refers to a unique index in a large vocabulary. All but
one of the vector values are zero, a characteristic, which accounts for the name one-hot
encoding. A result of this representation is that the distance between two words in vector
space is always the same. Therefore, one-hot encodings lack to represent information
about similarities between different words, as their encoding is arbitrary and relations
between words is typically evaluated on their distance or the angle between them. This
leads to the fact that such discrete word vectors do not generalize across words [Ben+03;
PSM14].

Continuous word vectors escape this limitation, because using a real-valued vector instead
of a one-hot encoding resolves the issue of equal distances and reduces the dimensional-
ity of the representation significantly. According to Jurafsky and Martin [JM17], word
embeddings tend to have a dimensionality between 50 and 500. Sutskever et al. [SVL14]
used a 1000-dimensional word embedding in their machine translation task. However,
using a 1000-dimension real-valued vector instead of an one-hot vector, with a dimension-
ality of the vocabulary size V , is an achievement regarding computational efforts and the
curse-of-dimensionality, which describes the phenomenon that data becomes sparse as the
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dimensionality increases [GBC16]. Furthermore, continuous representations can capture
semantic and syntactic information [CW08; Mik+13a].

One can distinguish between two families of state-of-the-art approaches that train word
embeddings. While GloVe (global vectors) [PSM14] is an example of the methods building
on global co-occurrence of words in a corpus, word2vec [Mik+13b] is a representative of
the methods that rely on local context windows. Both families offer a way to incorporate
pre-trained word embeddings into a neural dialog system. Subsequently, this section will
discuss GloVe, as it will be applied in this thesis.

GloVe is an unsupervised learning algorithm, which explicitly aims to map similar words to
similar regions in vector space. For this purpose, the algorithm iterates through a corpus
and constructs a co-occurence matrix for a predefined vocabulary. The co-occurence
matrix Xij captures how often the word i appears in the context of word j. In their
experiments, the authors evaluated different corpora, varying from Wikipedia excerpts
of 1 billion tokens to web data from Common Crawl with 42 billion tokens. Except for
the Common Crawl data the vocabulary was build of the 400,000 most frequent words
[PSM14]. They propose a weighted least squares regression, which minimizes

J =
V∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2, (3.1)

where wi and bi represent the embedding and bias for word i, w̃j and b̃j are the context
word vector and bias of word j. Furthermore, f is defined as a weighting function, which
prevents from learning uncommon word pairs. By this design, the authors intend to
learn word vectors based on ratios of co-occurrence probabilities. The following example
will explain this underlying assumption. Given a probe word k, one would like to assess
whether it maps close or far from a target word t. Therefore, Table 2 provides the co-
occurrence probabilities P (k|t) of different probe words k given a target word t [PSM14].

Probability and Ratio k=solid k=gas k=water k=fashion
P (k|ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−5

P (k|steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5

P (k|ice)/P (k|steam) 8.9 8.5× 10−2 1.36 0.96

Table 2: Co-occurrence Probabilities [PSM14]

As solid describes the thermodynamic phase of ice it seems reasonable that their word
vectors should map closer together than the ones of ice and gas. This intuitive idea is
confirmed by the co-occurrence probability of those words. As can be seen, the word ice
appears more often in relation with solid, than it does with gas. Furthermore, gas co-
occurs more frequently with steam than it does with ice. The ratio of both co-occurrence
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probabilities given a probe word k captures the addressed relation between the probe word
and the two target words. For instance, a large ratio (much greater than one) indicates
that a probe word correlates with ice, whereas a small ratio (much smaller than one)
indicates that a probe word correlates with steam. Furthermore, a ratio of probabilities
close to one can be used to identify non-discriminative words, like water and fashion.
While water co-occurs frequently with both target words, fashion is not related to them
and therefore co-occurs infrequently. The authors leveraged this capability of the ratio of
probabilities and derived the objective function presented in Equation 3.1 [PSM14].

As a result, Pennington, Socher and Manning [PSM14] found that GloVe outperforms
other word embeddings in finding word analogies, named entity recognition and word
similarity tasks. GloVe vectors capture several levels of semantic and syntactic information
of language. Figure 17 shows a 2-dimensional visualization, where GloVe embeddings
preserve complex relations like gender specific terms [PSM14].

Figure 17: A 2-dimensional GloVe Visualization [PSM14]

GloVe captures the relation between male and female nouns. In each pair, the male
phrase is located below the female phrase. The connection between both words points
in the same direction and seems to have a similar length. Furthermore, one can observe
that pairs group by context. The value-pairs located in the interval [-0.5, -0.3] on the
x-axis seem to belong to the category family members. Whereas the group located in the
interval [0.3, 0.5] on the x-axis associate nobleman and -woman.
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3.3 Attention

Seq2Seq models resolve the problem that the length of input and output sequences needs
to be defined a-priori. However, the encoder-decoder approach created a new bottleneck,
the fixed size thought vector. While a network is processing longer sequences, it might be
difficult to encode all relevant information into such representation [BCB14].

Bahdanau, Cho and Bengio [BCB14] addressed this problem in a machine translation
task and proposed an attention mechanism to improve performance. Attention in neural
networks originated in the field of image recognition, where it was used to let a network
focus on certain regions of an image [Xu+15]. In natural language processing however, the
attention mechanism leverages encoder hidden states to decide to which inputs it should
focus during decoding.

Figure 18: Seq2Seq Model augmented with an Attention Mechanism [LPM15]

Figure 18 illustrates the behavior of the attention mechanism to predict the output ŷt.
Like in the standard Seq2Seq model, the first RNN produces a fixed size representation
based on the input sequence. However, at each encoder time step s, the models stores
the RNNs hidden state h̄s. After the input sequence terminated, the encoder passes the
thought vector to the decoder. During decoding, the second RNN scores the current
decoder (target) hidden state ht against all encoder (source) hidden states h̄s. In their
initial proposal, Bahdanau, Cho and Bengio [BCB14] defined the score function as

score(ht, h̄s) = vTa tanh(Wa[ht, h̄s]), (3.2)
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where va and Wa are weights and the score function concatenates the source hidden state
h̄s and target hidden state ht. Therefore, this will be referred to as the concat scoring
function. Later work by Luong, Pham and Manning [LPM15] refined it based on the dot
product and defined it as

score(ht, h̄s) =

hTt h̄s dot

hTt Wah̄s general
. (3.3)

This thesis will use the initial scoring function by Bahdanau, Cho and Bengio [BCB14].
However, some findings about the refined scoring function will be discussed at the end of
this section. In general, the scoring function is implemented with the goal, to yield high
values if a source hidden state h̄s is important to the decoding of the target hidden state
ht. Based on the scoring function one can compute the attention weights αts by

αts =
exp(score(ht, h̄s))

ΣS
s′=1 exp(score(ht, h̄s′))

. (3.4)

Due to the application of the softmax transformation, the attention weights αt1, ..., αts
between a certain target hidden state ht and all source hidden states h̄1, ..., h̄s sum to one
and can be seen as a probability distribution. This distribution is then used to determine
a context vector ct, which is defined as a weighted sum:

ct =
∑
s

αtsh̄s. (3.5)

The context vector can be described as a summary of relevant inputs with regards to
a specific decoder time step t. In order to compute the prediction ŷt it is necessary to
combine the information of the source-side context vector ct with the current decoder
hidden state ht. This combination is defined as the attentional hidden state

h̃t = tanh(Wc[ct, ht]), (3.6)

where Wc is a weight matrix applied on the alignment of the context vector ct and the
hidden state ht. The attentional hidden state h̃t is then used to compute

ŷ = softmax(Wyh̃t), (3.7)

where Wy is a weight matrix and a softmax transformation turns the output into a prob-
ability distribution [BCB14; LPM15].

Bahdanau, Cho and Bengio [BCB14] found that the application of an attention mechanism
leads to improved performance compared to conventional Seq2Seq models. Especially the
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performance in longer sequences improved and made the model more robust. Thereby,
attention resolves the bottleneck between encoder and decoder. However, attention is
computationally expensive, because at each decoder time step t the algorithm computes
the attention over all source hidden states h̄s. This is impractical while working with
longer sequences like paragraphs or full documents. Therefore, Luong, Pham and Man-
ning [LPM15] introduced the concept of local attention. Instead of taking all encoder
hidden states into account, they propose to focus on a small window of source hidden
states. Indeed, they observed that local attention was able to decrease the test costs.
Furthermore, they showed that the choice of the score function has an impact on the per-
formance. The dot score function worked best for global attention, whereas the general
score function performed better for the local attention [LPM15].

Another representative of attention mechanisms are pointer networks as proposed by
Vinyals, Fortunato and Jaitly [VFJ15]. Pointer attention is able to solve problems where
the output dictionary corresponds to elements of the input sequence. The approach eases
the solution of combinatorial problems with variable length of the output sequence. They
leverage attention weights αt to define the probability of the next output token as

p(Ct|C1, ..., Ct−1, x) = αt, (3.8)

where x is an input sequence with n elements and Ci represents the i-th element in the
output sequence, which is an index between 1 and n. A major advantage of pointer
attention is that it reduces the size of the output space significantly [VFJ15].

3.4 Knowledge Base Interaction

Chapter 2.1 introduced dialog systems as models, which leverage dialog history to produce
a natural language response during the interaction with another agent. Nevertheless, a
dialog system can use more resources than current and previous user utterances. Many
use-cases require the utilization of external knowledge [Ser+15]. For example, a dialog
system, which assists during the booking process of an accommodation, needs access to
available hotels and hostels in the area of interest. Likewise, it is possible for a conversa-
tional agent to use news articles or user reviews to improve the interaction with the other
agent. However, this work will focus on the incorporation of knowledge that is stored in a
database. Subsequently, this section distinguishes between two classes of dialog systems,
based on how they interact with a KB. Afterwards, the term NoSQL will be discussed in
order to introduce Elasticsearch. Elasticsearch is a search engine that will be used as a
NoSQL database, storing the additional meta-information to the dataset.
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3.4.1 Hard-KB Lookup

One can distinguish between two classes of dialog systems based on the way how they
interact with a knowledge base [EM17]. According to Dhingra et al. [Dhi+16] dialog
systems that create a semantic representation out of a natural language question and
operate it against a database perform hard-KB lookup.

Recent work employed sketch-based approaches to produce SQL queries out of natural
language questions [XLS17; Yag17]. Both approaches require human intervention to scale
up to other query languages. This is due to the fact that they make strong assumptions
about the structure of SQL and hand-engineering is necessary to adjust the sketch. In
contrast, there is research aiming for more generic models in order to foster generalization
across different semantic representations. For instance, Dong and Lapata [DL16] imple-
mented an attention augmented Seq2Seq model and achieved competitive results through
a variety of semantic representations. Bordes, Boureau and Weston [BBW17] applied
memory networks (MemNNs) to generate API calls out of dialogs related to restaurant
bookings. MemNNs incorporate the capability to read and write to a memory module
[Suk+15; WCB14].

The previously discussed models share the same shortcoming, they require supervision
before they actually query the database. This is due to the fact that operating queries
against the database is non-differentiable. This is a major drawback of hard-KB lookup
as it impedes the application of the models in an end-to-end fashion. Wen et al. [Wen+16]
proposed a modular end-to-end dialog system. As they use hard-KB lookup, they needed
to train the different components of their model separately. In order to train the com-
ponents, the model requires intermediate labels, which leads to increased costs. Another
major drawback of hard-KB lookups is that the results returned from the database no
longer represent the uncertainty in the underlying parsing problem [Che+17].

A way to overcome the problem of non-differentiability is to use reinforcement learning
to include feedback from the database response [Li+17; WZ16; ZXS17]. Li et al. [Li+17]
proposed an end-to-end neural dialog system, which is based on the standard pipeline
architecture. Their architecture includes a dialog management component. Such com-
bines the components of the dialog state tracker and the dialog response selector of the
architecture discussed in Section 2.1.2. The dialog manager was implemented as a Deep
Q-Network, which is a value-based method according to the classification in Chapter 2.3.3.
This design choice distinguishes their model from the approach used in this thesis. Instead
of using a value-based method, this work uses a policy-based method inspired by Zhong,
Xiong and Socher [ZXS17]. They proposed a model consisting of three individual compo-
nents to parse natural language questions into SQL queries. While they used supervised
learning to predict an aggregator and the select column, the where clause was determined
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by the application of policy gradient. Instead of using reinforcement learning to achieve an
end-to-end character, the authors aimed to improve the quality of the where clause. They
state that arguments in the where condition can be swapped. For instance, "WHERE
A=a AND B=b" would yield the same result like: "WHERE B=b AND A=a". While
supervised learning would evaluate the query based on the string match, reinforcement
learning is able to address this unordered nature of the where clause [ZXS17].

3.4.2 Soft-KB Lookup

Despite hard-kb lookup, there are dialog systems that perform soft-KB lookup. Such
systems compute a probability distribution over the knowledge base and therefore work
in an end-to-end setting [EM17]. Dhingra et al. [Dhi+16] proposed a neural end-to-
end approach which interacted with real users via Amazon Mechanical Turk. Based on
a tabular representation T of the knowledge base they determine the probability that
a user is interested in a certain entry Tij, where i corresponds to a specific entity and j
refers to a category. Their implementation uses a GRU as policy network, which is trained
by policy gradient. The authors observed that their model tended to fail from random
initialization. They attribute this to the credit assignment problem. In order to overcome
this problem they use imitation learning to mimic hand-crafted agents [Dhi+16].

Dodge et al. [Dod+15] proposed the application of MemNNs in soft-KB lookup. They
used the memory component of the network to store each of the entries of the knowledge
base individually and train the model to attend over the memory entries. Furthermore,
Bordes et al. [Bor+15] showed that their MemNN model was able to generalize on unseen
data. They observed that MemNNs were able to handle additional facts from another
knowledge base, which were added after training. Despite the fact that the model was
not re-trained, the MemNN achieved remarkable results which were close to the state-of-
the-art [Bor+15]. Eric and Manning [EM17] developed an LSTM encoder-decoder model
and applied it in a in-car personal assistant task. Based on the concept of key-value
memory networks [Mil+16], they implemented a key-value approach to score the target
hidden state against the keys of the KB entries during decoding. Since the KB is stored
in triplets, the key of each entry is computed as the sum of the word embeddings of the
subject and the relation. Due to this mechanism they were able to retrieve relevant entries
from the knowledge base. The authors found that their model outperforms competitive
heuristics and neural baselines, like a Seq2Seq model augmented with attention [EM17].

However, soft-KB lookups have one drawback, as such dialog systems compute a distri-
bution over every entry in the KB, they can cause high computational costs. These costs
depend on the underlying mechanism to compute the distribution, as well as the size and
design of the KB.
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3.5 NoSQL and Elasticsearch

The utilization of information is a key capability of today’s business world. In 1970
Codd [Cod70] proposed the idea of relational databases. Furthermore, he was involved in
the development of SQL, which became the predominant technology to store and access
structured data in relational databases. However, recent developments show an increased
interest in NoSQL databases. NoSQL represents an abbreviation for "not only SQL
databases". This name suggests that NoSQL databases do not aim to replace relational
database structures like SQL, but to complete the set of database tools for tasks, where
SQL is not the optimal choice [NPP13].

While NoSQL databases are able to handle e-mails, social media contents or images, re-
lational databases have problems with such unstructured data types. This is caused by
several reasons. First, relational databases rely on predefined table structures in that
unstructured data do not fit naturally. Fitting unstructured data into a predefined frame
binds resources and results in complex database structures, which makes the database
slow to work with. Non-relational databases do not have this problem, they can han-
dle unstructured data directly [Lea10]. Second, the performance of relational models
decreases as the data volume increases. Relational databases are not designed to work
on distributed systems. Therefore, their scalability is limited to an increase of the com-
putational power on a single system. However, many NoSQL architectures are designed
to guarantee high availability and high scalability due to their distribution across mul-
tiple server. Thereby, NoSQL architectures offer a significant advantage over relational
databases. [NPP13].

By the time of writing, the TOP 10 of the database-engines popularity ranking consisted
of six relational databases and four non-relational databases. The ranking is based on
a set of parameters, like Google trends or the number of times a systems name was
mentioned in social media, to evaluate the general interest in the system. Furthermore,
job offers and profiles in professional networks that include the name of a database, as
well as the amount of related topics on technical discussion websites, are used to capture
the technical importance of a system [Sol18]. The ranking shown in Table 3 reflects what
was mentioned before. In general, relational databases are a powerful tool if the available
data is structured. This accounts for the many use-cases in the business world. However,
there are situations, where data is unstructured and relational databases do not work
well. In such situations non-relational databases offer a useful alternative [Lea10].

Elasticsearch is one of the non-relational approaches that made it into the TOP 10 of the
ranking. Elasticsearch belongs to the category of search engines, which can be seen as a
subgroup of non-relational databases. Like other non-relational databases Elasticsearch
brings the advantage of high availability and high scalability. Furthermore, it features
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Rank Name Database Type
1. Oracle relational
2. MySQL relational
3. Microsoft SQL Server relational
4. PostgreSQL relational
5. MongoDB non-relational
6. DB2 relational
7. Microsoft Access relational
8. Elasticsearch non-relational
9. Redis non-relational
10. Cassandra non-relational

Table 3: DB-Engines Popularity Ranking - April 2018 [Sol18]

document-oriented storage and full-text searches in near real-time. This makes Elastic-
search to a state-of-the-art system which rapidly gained importance over the last years
[Ama18].

This thesis will use Elasticsearch to store the knowledge base which comes with the
dataset. Despite its technical relevance, there are additional reasons for this decision.
First, there are several approaches which aim to parse natural language questions into SQL
queries [XLS17; Yag17; ZXS17]. This work aims to extend this line of research to NoSQL
databases. Second, inovex GmbH belongs to one of the first partners of Elasticsearch in
Germany. For this reason, this work can build upon expertise and know-how. Finally, the
Elasticsearch framework offers standard interfaces which eases implementation. However,
this work will not discuss technical features of Elasticsearch.

3.6 Datasets

This section will discuss the selection of the dataset used in this thesis. In order to develop
an end-to-end goal-driven dialog system this thesis will focus on written dialog tasks. This
scope intends to limit the complexity of the problem setting by excluding additional tasks
like e.g. speech recognition.

Serban et al. [Ser+15] provide a survey of available corpora to develop data-driven dialog
systems. They focus on publicly available datasets. In addition, the open-source platform
ParlAI offers an environment to implement and test dialog systems on several datasets
[Mil+17]. Those two resources represent the starting point for the dataset selection process
in this thesis.
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Miller et al. [Mil+17] group the available datasets on ParlAI in five separate categories:
sentence completion, question answering, goal-oriented dialog, chit-chat and visual ques-
tion answering. This distinction appeared to be a good guidance to conduct a first pre-
selection. As this thesis targets for goal-driven dialog, the categories sentence completion
and chit-chat were excluded from further consideration. Chit-chat describes conversations
that do not follow specific goals and therefore better fit to train non-goal-driven dialog
systems. Sentence completion however, is a supportive skill, but does not contribute to
the development of an end-to-end dialog system. As visual question answering incorpo-
rates the utilization of images it was excluded as well. As a result of this pre-selection,
two out of five categories remained relevant: question answering and goal-oriented dialog.
Question answering (QA) is a simple dialog task which only involves one interaction turn.
It aims to the retrieval of factoid answers based on a specific question. Goal-oriented
dialog summarizes different types of conversational elements which are required to fulfill
a complex task, for instance booking a flight. In this way, question answering can be seen
as a subtask of goal-oriented dialog.

Henceforth, this thesis will focus on question answering as it is one of the building blocks
to complete the challenge of full goal-oriented dialog. Table 4 provides details about
the size and the incorporation of external knowledge for an excerpt of available question
answering datasets in ParlAI [Mil+17].

Dataset Size (Train / Val / Test) External Knowledge
bAbI 1k (10k) [Wes+15] 1k (10k) / 0 / 1k (10k) -
MovieDD-QA [Dod+15] 96k / 10k / 10k KB
Simple Questions [Bor+15] 76k / 11k / 21k KB

SQuAD [Raj+16] 108k Full text
Web Questions [Ber+13] 3k / 778 / 2032 KB
Wiki Movies [Mil+16] 96k / 10k / 10k KB and full text
Wiki QA [YYM15] 2k / 296 / 633 Full text

Table 4: Excerpt of available Question Answering Datasets in ParlAI [Mil+17]

Since the bAbI datasets do not incorporate an external KB, they were removed from
further consideration. In addition, Wiki QA and SQuAD were excluded based on the
type of their external knowledge. Both datasets leverage full text. For the same reason,
Wiki Movies was removed since it extends the QA task of the Movie Dialog Dataset
(MovieDD) with external knowledge in form of Wikipedia articles [Mil+16]. Out of the
remaining datasets, the MovieDD-QA was selected since it combines a domain specific
use case with a large scale dataset. While Simple Questions is an open domain dataset,
Web Questions was considered to small. Hence, this thesis will conduct experiments on
the MovieDD-QA. The dataset will be introduced an analyzed in Chapter 4.2.
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3.7 Conclusion of the State-of-the-Art

The previous chapter provided an answer to the first research question by highlighting the
state-of-the-art in dialog tasks. In general, dialog can be seen as a task based on sequential
inputs, which accounts for the usage of RNNs. Typically, two RNNs are combined to
implement an encoder-decoder architecture.

The application of word embeddings enables such methods to transform words into a
numerical representation and use them as inputs for computations. Since pre-trained word
embeddings capture structural information of language, like semantics or syntax, they
contribute to an increased performance. Furthermore, state-of-the-art models make use of
attention, which allows them to focus on subsets of the inputs while predicting the outputs.
This improves performance especially for longer sequences [BCB14]. Pointer attention
mechanisms are used when outputs correspond to positions in the input sequence. Their
design significantly decreases the output space and therefore reduces the computational
effort [VFJ15].

Additionally, this section discussed how dialog systems interact with external KBs. One
can distinguish between hard-KB lookup and soft-KB lookup. While the former produces
database queries, the latter computes a probability distribution over the KB entries.
Both lookup types have been implemented recently. However, it appears that there is no
analysis of their competitiveness on the same dataset. A major shortcoming of hard-KB
lookup is the non-differentiability of the database operation. The subsequent section will
propose two different ways to train a Seq2Seq model and preserve the end-to-end character
of the system.
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4 Approach

This thesis develops an end-to-end dialog system that answers natural questions in the
movie domain. Therefore, this section outlines the underlying methodology. In a first step,
the general approach, an LSTM-based Seq2Seq model, will be introduced. Afterwards,
the MovieDD will be analyzed. Finally, the Seq2Seq model will be implemented into
an architecture that is adjusted on the MovieDD use case and the interaction with an
Elasticsearch instance.

4.1 General Approach

Generally speaking, this thesis proposes a Seq2Seq model, which maps an input sequence
x into an output sequence ŷ. The input sequence

x =
[
x1, ..., xS

]
=
[
xv1, ..., x

v
m, x

c
m+1, ..., x

c
m+n, x

q
m+n+1, ..., x

q
m+n+p

]
(4.1)

consists of three subsets. The first m words describe the vocabulary of command tokens.
The following n words represent the different categories that exist in the database. Finally,
there is a sequence of p words which equals the question that is asked to the dialog system.

The output ŷ = [ŷ1, ..., ŷT ] is a sequence of words chosen from the input vocabulary. If
the command token <EOS> is contained in xv, the length of the output sequence T is
variable. As soon as the model predicts this command token, the decoder terminates. If
however, <EOS> is not fed into the model as part of xv, the length of the output sequence
T needs to be defined in advance. For each training example x the dataset provides a
ground truth y.

Let query(·) denote a database operation, which takes the predicted sequence ŷ as in-
put and returns a database response ωi = [ω1, . . . , ωΩ] . Typically query(·) is non-
differentiable. Depending on the choice of the database and the definition of query(·),
the database response ω can either be a ranked or an unordered list. A single response
element ωi with i ∈ [1, . . . ,Ω] can consist of one or multiple entities e. Furthermore, ψ
denotes the ground truth answer to the question xq. Like the database response elements,
an answer ψ can consist of one or multiple entities e.

4.1.1 Encoder

The model is designed as a two-layer encoder-decoder LSTM. In the encoder, a bi-
directional LSTM reads the embedded inputs from x1 to xS and vice versa. Thereby
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it computes the hidden states in the first layer of the encoder by

−→
h (1)
s = LSTM

(
emb(xs),

−→
h

(1)
s−1

)
←−
h (1)
s = LSTM

(
emb(xs),

←−
h

(1)
s+1

)
,

(4.2)

where
←−
h

(1)
s and

−→
h

(1)
s are hidden states of the forward and backward pass at time step s

and emb(xs) is the embedding of the s-th element of the input sequence x. Furthermore,
the hidden states of the second layer are computed by

−→
h (2)
s = LSTM

(
−→
h (1)
s ,
−→
h

(2)
s−1

)
←−
h (2)
s = LSTM

(
←−
h (1)
s ,
←−
h

(2)
s+1

)
,

(4.3)

where the outputs of the first layer of the LSTM are fed as inputs into the second layer
of the network. At each encoder time step s one can obtain the combined hidden state of
the LSTM by

h̄(l)
s =

[
−→
h (l)
s ,
←−
h (l)
s

]
, (4.4)

where l ∈ 1, 2 represents the layer of the LSTM.

4.1.2 Decoder

In contrast, the decoder is designed as a unidirectional LSTM with two layers. As a result,
one can compute the hidden states of the decoder according to

h
(1)
t = LSTM

(
yt−1, h

(1)
t−1

)
h

(2)
t = LSTM

(
h

(1)
t , h

(2)
t−1

)
.

(4.5)

In the first layer of the decoder, the LSTM takes the prediction of the previous time step
yt−1 as input. In order to compute the hidden states at time step 1, additional remarks
are required. In this case, the decoder receives a concatenation of the final encoder hidden
states

h
(1)
0 =

[
−→
h

(1)
S ,
←−
h

(1)
1

]
h

(2)
0 =

[
−→
h

(2)
S ,
←−
h

(2)
1

] (4.6)

as inputs. Since there is no prediction y0, the model is fed the index of a start-of-sequence
signal, which is part of xv.
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4.1.3 Attention Mechanism

Section 3.3 introduced attention mechanisms. This thesis defines the attention scores as

score
(
ht, h̄s

)
= vT tanh

(
Wsh̄s +Wtht

)
, (4.7)

where Ws,Wt and v are learnable weight matrices [BCB14]. Hence, the attention weights
can be computed by

αts =
exp(score(ht, h̄s))

ΣS
s′=1 exp(score(ht, h̄s′))

. (4.8)

Furthermore, one can concatenate the attention weights between a specific decoder hidden
state ht and all encoder hidden states h̄1 to h̄S to a single vector:

αt =
[
αt1, ..., αts

]
. (4.9)

4.1.4 Training with Intermediate Labels

This section discusses how the proposed Seq2Seq model is trained with intermediate labels.
Since the execution of the database queries breaks the differentiability, intermediate labels
are used in order to provide feedback about the correctness of the produced queries.
However, this way of training the model does not include feedback from the retrieved
responses after operating the queries.

At each decoder time step t, the output of the model is computed by

ŷt = argmax(αt). (4.10)

The predicted output sequence ŷ and the corresponding ground truth y are used to train
the model with cross entropy loss as presented in Section 2.2.3.1.

4.1.5 Training with Policy Gradient

Leveraging the responses of database operations is possible by training the proposed
Seq2Seq model with policy gradient, as introduced in Section 2.3.3.2. In this case, the
attention weights are used to formulate a stochastic policy

π
(
ŷt | ŷ1, ..., ŷt−1, x, θ

)
= αt, (4.11)

which defines the probability of choosing the next token of the output sequence ŷt [VFJ15].
Hence, action at corresponds to the selection of a specific word of the input vocabulary,
whereas state st is defined by previous predictions ŷ0 to ŷt−1, the set of command tokens
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xv, the database categories xc and the posed question xq. Furthermore, the network
parameterization is given by θ.

The reward function R =
[
− 2,−1,+z

]
is defined as

R =


−2 +R+, if query(ŷ) is an invalid query

−1 +R+, if query(ŷ) is a valid query but yields an incorrect result

+z +R+, if query(ŷ) is a valid query and yields the correct result,

(4.12)

where z is a positive reward that will be varied during the experiments. A query is
considered a valid query if its operation yields a non-empty response and causes no error.
Furthermore, a correct result matches at least one of the ground truth entities of the
answer. R+ is a count-based exploration bonus, which is defined by

R+ =


∑
t∈TR+

√
2 ∗ log(n)

count(ŷt)
if boni are active

0 else,

(4.13)

where n is the number of samples in a mini-batch and count(ŷt) is the number of times
that action ŷt was chosen at time step t of the mini-batch iteration. Due to the sequential
character of ŷ, the exploration bonus is accumulated over a set of time steps t ∈ TR

+ .
The design of the exploration bonus is inspired by upper confidence bounds [LR85]. Since
its application is optional, a hyperparameter is defined to decide whether to use the boni
or not.

Finally, this variant of the model is trained with the REINFORCE algorithm according
to the following update rule:

θt+1 = θt + αR∇θ

∑
t∈T

log π
(
ŷt | ŷ1, ..., ŷt−1, x, θ

)
. (4.14)

Due to the episodic character of the setting, the discount factor γ is set to one and omitted
in the equation above.
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4.2 Movie Dialog Dataset - Question Answering

This section provides an insight into the MovieDD, which was introduced to foster the
development of end-to-end dialog systems [Dod+15]. The dataset consists out of five
subtasks, each of them addressing different functionalities of such dialog systems. This
thesis works with the QA task of the MovieDD, which is build to determine the capa-
bilities of a conversational agent to answer factoid questions. The MovieDD-QA task is
divided two complementary resources, a KB and a dataset that consists of natural lan-
guage question-answer pairs. The following subsection will analyze the knowledge base,
which incorporates information about 17,340 movies. Furthermore, it will describe the
adjustments that were made to store the knowledge base into an Elasticsearch instance.
Afterwards, the dataset will be examined and it will be used to generate intermediate
labels in order to train on question-query pairs.

4.2.1 Knowledge Base

The main resource for the development of the KB was the Open Movie Database (OMDb).
In total, the dataset contains information about 17,340 movies. Each movie is connected
to a set of meta data, which was sourced from OMDb. In addition, the authors aug-
mented the dataset with tags related to the movies. Those were retrieved from MovieLens
[Dod+15].

The collected data is stored in triples, like

(The dark horse︸ ︷︷ ︸
subject

, starred_actors︸ ︷︷ ︸
relation

,Bette Davis︸ ︷︷ ︸
object

), (4.15)

where the subject refers to a movie title throughout the KB.

4.2.1.1 Adjusting the KB Design
Since this thesis uses an Elasticsearch instance to store the KB, it was necessary to adjust
the design of the knowledge base. Therefore, a unique index was created for each movie.
Each index stores the information about a movie in different categories. In general, a
category corresponds to the relation in the original design of the KB. Despite the relation
types, there is one additional category that stores the name of a movie for each index. In
total, the KB contains 11 different categories. Table 5 shows index 8,741, which stores
the movie "Live Free or Die Hard". As one can see, it contains information about all but
two categories.
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Category Content
Name Live Free or Die Hard
Actors Bruce Willis
Author John Carlin
Director Len Wiseman
Genre Action
Rating Good
Votes -

Language -
Plot JohnMcClane and a young hacker join forces to take down

master cyber-terrorist Thomas Gabriel in Washington D.C.
Release Year 2007

Tags Action, Bruce Willis, Computers, Good, United States

Table 5: Exemplary KB Entry (Index 8,741)

4.2.1.2 Descriptive Analysis of the Knowledge Base
As mentioned before, the adjusted KB contains 11 different categories and stores 17,340
movies. Figure 19 shows how frequent the different categories appear in the knowledge
base. Almost all indexes contain information about movie name, plot, year and director,
whereas the categories language, rating and votes appear very seldom.

Figure 19: Frequency of Categories throughout the KB

This implies that the quality of information about movies differs. In fact, the average
number of categories per index is 6.87 and the standard deviation is 1.17. While 82.0% of
the indexes contain between 6 and 8 categories, about 3.1% contain 4 or less categories.
Indeed, there are very few indexes (0.02%) with 10 categories and none with 11 categories.
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4.2.2 Datasets

The Movie Dialog Dataset QA task is based on the Simple Questions dataset by Bordes et
al. [Bor+15]. Dodge et al. [Dod+15] identified a subset of relevant questions from Simple
Questions and enlarged it with data from the OMDb. The resulting dataset is divided in
a training, validation and test split of approximately 96k, 10k, 10k examples, respectively
[Dod+15].

4.2.2.1 Terminology and Introduction of the Running Example
This subsection will present the approach specific terminology and introduce the running
example in order to improve the understandability. In Section 4.2.3.1 this terminology
will be used to explain the production of intermediate labels. This thesis assumes that
one can capture the meaning of each question with three parameters. Such is possible due
to the clearly defined use-case and the low complexity of the questions. Hence, applying
the model on other datasets would require to verify the validity of this assumption.

The original dataset provides each training example as a question-answer pair. For in-
stance, the question "who was the writer of True Lies?" can be answered with the screen-
writers James Cameron and Claude Zidi. Table 6 shows how the different concepts apply
to the example. The first parameter, query entity (QE), refers to the object in a ques-
tion, which is the movie True Lies. Since there is no restriction about the length of a
movie title or other categories, the number of words captured by the QE can vary. The
second parameter, query field (QF), captures the category of the QE. As mentioned be-
fore, True Lies is a movie name. Finally, the response field (RF) specifies the requested
category of the database response. Both fields are restricted to contain only one category.

Running Example
Question Who was the writer of True Lies?
Answer James Cameron, Claude Zidi

Query Entity True Lies
Query Field Name

Response Field Author
Question Pattern Who was the writer of [@name]?
Question Class Name to Author

Table 6: Running Example

A question pattern refers to the generic form of a question. Instead of a specific entity,
the question pattern contains a category placeholder, e.g. [@name]. Thereby, it can be
used to summarize questions that only differ in their entity. Furthermore, a question
class is defined as the set of questions patterns that share their QF and RF.
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4.2.2.2 Descriptive Analysis of the Datasets
In order to determine how demanding the MovieDD-QA task is, this section analyzes the
variety of questions in the dataset. Therefore, Figure 20 reports the distribution of first
words of a question. It was found that what and who account for more than two-thirds
of questions. Both words appear to be flexible with respect to corresponding question
patterns and question classes. For instance, what can either be found in: "what rating
did [@movie] get?" or in: "what movies did [@actors] act in?", whereas who can be used
to address different RFs like author, director or actors.

Figure 20: First Words of Questions in the Development Set.

While most of the less frequent words share this characteristic, it was found that when is
an identifier for questions that aim to retrieve the release year of a movie. First words
of a question, which occur less than 100 times in the dataset, are combined in OTHERS
and account for 3.4% of the dataset.

In addition, Figure 21 presents (a) the frequency of the lengths of the questions and (b)
the length of the entities that appear in these questions. The average question in the
development set is 7.58 words long and the standard deviation is 1.94. About 73.9% of
question lengths fall into the interval between six and nine words. However, there are a
few outliers. On the one hand, "who directed Cowboy?" is a representative of 0.5% of
the questions with less than four words. On the other hand, 1.7% of the questions consist
of more than 13 words, like: "what was the release year of Who is Harry Kellerman and
why is he saying those terrible things about me?" The average entity length is 2.49 words
and the corresponding standard deviation is 1.23. A significant share of entities with the
length two is caused by the question classes which QFs correspond to a person, like author
or director.

Figure 20 and 21 show results that were observed on questions of the development set.
Since the training and test set show similar patterns they are not reported.
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(a) Questions (b) Entities in Questions

Figure 21: Distribution of Question and Entity Lengths in the Development Set

In contrast, Table 7 shows a more abstract contemplation on the level of question classes.
Each row in the table corresponds to a question class, which combines all question patterns
that share the same QF and RF. In total, the dataset consists of 13 different question
classes and 160 question patterns. Although, name to rating and name to votes only
appear in the training set. As one can see, the number of question patterns per class
varies between 7 and 20. There are four classes that consist of less than 10 question
patterns. The frequency of the question classes appears to be very balanced across the
three splits of the dataset. However, within a single split of the dataset the frequency of
question classes is skewed.

Note that every question class contains the category name either as its QF or its RF.
Future work might adjust the dataset in order to remove this over-representation. One
can think of many examples that combine different categories besides the movie title. For
instance, "which actors worked with [@director]?" or "which author is known to write
[@genre] movies?".



4 APPROACH 61

Query Response #Question Frequency
Field Field Patterns Train Dev Test
Name Year 14 14.40% 14.63% 14.27%
Name Director 14 13.10% 13.35% 13.07%
Name Actors 7 11.77% 11.44% 11.49%
Name Author 18 11.35% 11.28% 11.10%
Name Genre 20 10.67% 10.76% 10.96%
Author Name 13 9.10% 9.10% 9.10%
Actors Name 10 8.86% 8.86% 8.83%
Name Tags 16 8.31% 8.57% 8.50%

Director Name 14 5.35% 5.43% 5.58%
Tags Name 9 4.00% 3.79% 4.14%
Name Language 8 2.70% 2.79% 2.96%
Name Rating 10 0.28% 0.00% 0.00%
Name Votes 7 0.11% 0.00% 0.00%

Total 160 100.0 % 100.0 % 100.0 %

Table 7: Overview on Question Classes

4.2.3 Extensions to the Movie Dialog Dataset - QA task

This section proposes two extensions of the MovieDD-QA task. While the original
MovieDD datasets provide question-answer pairs, training the model as discussed in Sec-
tion 4.1.4 requires question-query pairs. Therefore, this section will present the annotation
with intermediate labels. Furthermore, training neural architectures is known to be data
intense. In order to compare the proposed training methods regarding their demand for
data, this section introduces a smaller version of the training set.

4.2.3.1 Production of Intermediate Labels
Since the database operation query(·) breaks the differentiability of the model, question-
answer pairs can not be used for supervised training. Intermediate labels represent the
ground truth y to the sequence ŷ that is input to the database operation query(·). As
discussed in Section 4.2.2.1, the meaning of each question can be captured by the param-
eters QF, QE and RF. Due to the variable length of the QE, each question was annotated
with a sequence of four words. While the first word represented the identified category
of the QF, the fourth word represented the category of the RF. The second and third
word of the label capture the first and the final word of the QE. This design implicitly
assumes that all words in between the start and final word belong to the QE. Thereby, it
is possible to describe QEs of different lengths with only two parameters.
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This design enables the algorithm to deal with entities that consist of only one word.
Given the question: "who acted in Boca?", the second and the third token of the label
will refer to Boca. In a similar way, longer query entities can be handled. For example,
in "James B. Clark was the director of which movies?", the QE consists of three words.
In this case, the second token of the label refers to James, since it represents the start
word of the QE, whereas the third token of the intermediate label refers to Clark, since it
is the final word of the QE. When the actual query is produced, B. can be included since
it is embraced by James and Clark.

The production of intermediate labels was eased by the fact that the MovieDD includes
a list of all entities used throughout the different tasks. Thereby, it was possible to
automatically extract the query entities for most of the question. As a result, the number
of potential question patterns was reduced to about 500. These candidates included cases
that where unambiguous and therefore led to incorrectly removed entities. For instance the
question "what was the release date of the movie Magic Mike?", contains the entity magic
mike. However, there is also a film calledmovie magic. Hence, the list of potential question
patterns was reviewed by hand and compiled to 160 actual question patterns. Each of
this question patterns was manually annotated with the ground truth sequence discussed
previously. Afterwards, each question that groups into a certain question patterns was
automatically annotated with the same intermediate label.

4.2.3.2 Introduction of a Reduced Training Set
In order to compare the proposed training approaches regarding their demand for data,
this thesis extends the MovieDD-QA task by a smaller version of the training set. This
dataset will be referred to as the reduced training set. In total, the reduced training
set contains 10k examples, which were randomly sampled from the original dataset with
respect to the frequency of question classes (see Table 7 in Chapter 4.2.2.2). Hence, the
reduced training set shares the same characteristics as the original dataset.

4.3 Implementation Details

This section presents the implementation of the proposed Seq2Seq model into a dialog
system that queries an Elasticsearch instance to answer natural language questions. Due
to the production of actual queries, one can classify the KB interaction as hard-KB lookup.
Figure 22 shows the implementation of both components into the system architecture.
Given a natural language question the Seq2Seq model will predict a sequence that is used
to fill three slots in the query interface. The resulting query is operated on an Elasticsearch
instance to retrieve a database entry which answers the question.
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Figure 22: System Architecture

Training the model is possible in two ways. (1) Since the database operation breaks
the differentiability of the system, intermediate labels, which represent the query ground
truth, are used to train the model in a supervised fashion. (2) Leveraging the REIN-
FORCE algorithm allows to overcome the problem of non-differentiability and one can
train the model on question-answer pairs.

4.3.1 Model

In each training iteration, the model receives a lower case version of the inputs. This
thesis defines the three subsets of the input x as the following. The subset xc contains the
11 database categories, described by a single word. Furthermore, xq represents a question
sampled out of the dataset. Finally, the vocabulary of command tokens xv only contains
a start-of-sequence token. Since it does not contain an end-of-sequence token, the length
of the output sequence ŷ will be set to four. Let ŷ1 represent the QF, then ŷ2, ŷ3 represent
the first and final word of the QE, whereas ŷ4 represents the RF.

Figure 23 illustrates the functionality of the model. As described in Chapter 4.1.1, the
encoder is a two-layer bidirectional LSTM that reads the embedded inputs. This thesis
uses 300-dimensional GloVe embeddings that were pre-trained on the 42B corpus. The
final hidden states of the encoder are concatenated and passed to the decoder (Chapter
4.1.2). Such is a two-layer unidirectional LSTM, which takes the outputs from time step
t − 1 as inputs. At each decoder time step t the model attends over the encoder hidden
states (Chapter 4.1.3) and computes a probability distribution over the input vocabulary.
While training with intermediate labels, the most likely token from the input vocabulary is
selected (Chapter 4.1.4). When the model is trained with policy gradient, the probability
distribution is considered as a stochastic policy and predicting the next token in the output
sequence is the corresponding action (Chapter 4.1.5). The hidden size of all LSTM-layers
is defined as 100. Furthermore, dropout of 0.3 is used in encoder and decoder.
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Figure 23: Seq2Seq Model

4.3.2 Query Interface

The interaction between the model and the Elasticsearch instance was implemented by
the python libraries Elasticsearch-py and Elasticsearch-dsl. While Elasticsearch-py was
used to set up an Elasticsearch client, Elasticsearch-dsl was used to query the database.

The query interface is used to implement the database operation query(·), which takes
the models output sequence ŷ as input. First and final word of the QE (ŷ2, ŷ3) are used
to extract the complete QE out of the question xq. Then, the QF (ŷ1) and the QE are
used to produce an Elasticsearch term query, which searches the index for exact matches.
The RF (ŷ4) of the first retrieved document is used as response ω.

Instead of using term queries one could implement match queries. However, such would
cause a credit assignment problem, since they are able to process full questions. Thereby,
the boundaries between the capabilities of Elasticsearch and the proposed Seq2Seq model
would blur.
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4.3.3 Experiments

This section outlines the experiments that were conducted in this thesis. Since this thesis
extended the MovieDD by intermediate labels, the quality of these annotations will be
evaluated in a first step. Therefore, the database operation will be executed based on the
intermediate labels. As a result, mismatches between ground truth question-query pairs
and ground truth question-answer pairs can be identified.

Afterwards, this thesis investigates on the performance of the proposed Seq2Seq model.
For all experiments, ADAM will be used as the optimizer and the learning rate is defined as
0.0001. Early stopping is applied if the accuracy on the validation set does not increase for
a period of 15 epochs. Furthermore, the model will be trained on three different variants
of the training set. Firstly, the original training set with 96k examples will be used to
train the model. In a second line of experiments, the model is trained on the reduced
training set with 10k examples. Finally, this thesis uses a version of the original training
set, where two question patterns are removed from each question class. As a result, 81k
examples remain in the dataset. This third version of the training set is applied in order
to determine the capabilities of the model to generalize on unseen question patterns. In
addition, one can distinguish the experiments with respect to the training method.

On the one hand, the proposed model is trained with cross entropy loss based on question-
query pairs. For these experiments, the Mini-Batch Size (MBS) is set to 256. While
training on the reduced training set (10k) was performed for 50 epochs, models were
trained for 30 epochs on the original dataset (96k) and the generalization dataset (81k).

In contrast, all experiments that implement training with policy gradient on question-
answer pairs are trained for 50 epochs. However, different MBS (128, 256 and 512) are
determined. To limit the complexity of the problem and speed up learning, the pointer
mechanism only attends over a reduced set of the inputs if trained with policy gradient.
While predicting the QF and RF, the set of relevant inputs is defined as the database
categories xc. To predict the first and the final word of the QE, the pointer mechanism
attends over the input question xq. Furthermore, this thesis investigates on different
configurations of the reward function. According to the reward function R = [−2,−1,+z],
the model receives a positive reward z if the execution of query(ŷ) yielded a correct result.
During the experiments, the positive reward z will be varied (+1, +5, +25). Additional
experiments investigate on the influence of a count-based exploration bonus. Therefore,
the set of relevant time steps is defined as TR+

= {1, 4}, to provide an incentive for the
model to deviate from predicting the predominant category name for the QF and RF.

Each hyperparameter configuration is used in three experiments to determine the stability
of the results. All experiments are run on a single graphics processing unit (GPU) of type
Nvidia Titan X. Appendix A.2 provides a list of packages used in the implementation.
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5 Results and Discussion

This chapter presents the results of the conducted experiments, which had a combined
runtime of more than 400 hours. In order to provide appropriate evaluation tools, the
following section will elaborate a set of metrics in a first step. In a second step, the
quality of the intermediate labels will be determined. Third, an overview of the observed
results when training the model with intermediate labels is reported. Afterwards, the
discussion will turn to the outcomes of training the model with policy gradient. Finally,
the performance of the proposed hard-KB lookup model will be compared to models that
performed soft-KB lookup.

5.1 Evaluation Metrics

This section discusses how the system’s performance will be evaluated. It will start by
defining the general notation and finish by the deriving specific metrics from this notation.

The following parameters will be used to specify the quantity of examples in a certain
split of the dataset, e.g. the test set. While N will denote the total number of examples
in such split, Nvq refers to the number of produced valid queries. A query is considered a
valid query if its operation against the database resulted in an non-empty response and
caused no error. Furthermore, the number of executed queries that yielded a correct result
is denoted as Nex. If the ground truth of a question is ambiguous, e.g. an actor performed
in multiple movies, a database response is assessed correct result if it matches with one
of the ground truth items. According to the KB, the actor Willem Dafoe starred in 28
movies. As soon as the model predicts a query, which when executed returns one of these
28 films, it is a correct result. Finally, Nqm is defined as the number of examples where
the string of the predicted query equals the string of the target query. This will also be
referred to as query match.

Previous experiments on the MovieDD reported the hits@k metric. This metric considers
the first k answers and checks if one of these results matches the ground truth. Dodge et al.
[Dod+15] use hits@1 to evaluate the QA task of MovieDD. However in the case that k = 1

it equals the executional accuracy as proposed by Zhong, Xiong and Socher [ZXS17], who
defined it as Accex = Nex

N
. Furthermore, the query match accuracy Accqm = Nqm

N
refers to

the share of examples where the predictions of the QF, QE and RF matched the target
query. Finally, the share of valid queries is defined as Accvq = Nvq

N
. This set of metrics

will be used to evaluate the general performance of the model through different runs.

In addition, the predictions of the slots in the interface will be evaluated with another set
of metrics. Let N slot

qm be defined as the number of times the prediction of specific slot was
correct. In case of the QF or RF this equals the amount of correctly predicted categories,
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whereas for the QE slot this number equals the amount of correctly predicted entities.
Based on this count, the slot specific query match accuracy Accslotqm can be computed by
Nslot
qm

N
.

Let entity e refer to the object of a question xq, then e1 represents the first word of the
entity and e−1 represents the final word of the entity. The position of e1 in the input
sequence xq will be defined as λstart, whereas λend denotes the index of the final word of
the entity e−1. Given the question: "Who was the writer of True Lies?", the entity e

is the movie True Lies, which ranges from position 6 to 7 in the input sequence. Hence
λstart is set to 6, whereas λend equals 7. Note that the definition of λ is unambiguous.

Thus, the length of an entity L can be defined as

Lj = λend,j − λstart,j, (5.1)

where j is an index to distinguish from other samples of the dataset. As the model only
predicts the start and the final of the entity, it can appear, that it predicts λstart > λend.
Hence, entities with a negative length are referred to as invalid entities. They represent
one of the reasons that may cause invalid queries. In order to represent the average entity
length L̄ all valid entities are considered. Furthermore, the share of invalid entities is
denoted as κ.

To determine the deviation between predicted and ground truth entity, the distance dij
is defined as

dij = |λyij − λ
ŷ
ij|, (5.2)

where i ∈ {start, end} indicates if it is about the first or the final word of the entity, while
j is the index of the sample. Furthermore, λŷij represents the predicted entity, whereas
the ground truth entity position is denoted as λyij. Finally, this distance makes it possible
to define a quality measure ∆i with i ∈ {start, end} as

∆i =
1

N

N∑
j=1

1

1 + dij
. (5.3)

This quality measure is one, if the distance between predicted entity and ground truth is
zero, which means that their start and end words are equal. In contrast it decreases if
the distance rises.

Eventually, another metric for the evaluation of the QF and RF slot will be introduced. Let
NQF
c represent the number of times category c was predicted for the QF slot. Likewise,

NRF
c is defined as the count of category c in the RF slot. Based on these counts, the

prior probability that the model selects category c to fill a respective slot is given by
pslotc = Nslot

c

N
. Typically, the Shannon Entropy is used to describe the uncertainty of
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decisions [GBC16]. However in this thesis it is used to identify whether the model tends
to predict a predominating category with a high probability or a set of different categories
with smaller individual probabilities. Therefore, the entropy H(p) is defined as

H(p) = −
∑
c∈C

pc logC(pc), (5.4)

where p is the set of category probabilities pc with c ∈ C. Additionally, the logarithm
to the base of C instead of log2 is used to avoid that the entropy becomes larger than
one. This transformation has no effect on the following features of the entropy. First, if
only a single category is selected, the entropy yields zero. Second, if a set of categories
is drawn from a uniform distribution, the entropy yields one. This thesis mainly aims for
the former feature to identify when the model predicts only one predominant category.

5.2 Evaluation of the Annotated Dataset

The original dataset by Dodge et al. [Dod+15] consists of question-answer pairs. Since
one version of the proposed model is trained on question-query pairs, a pre-processing
step was necessary to annotate the data in order to produce intermediate labels. As the
authors provided a list that contained all entities of the dataset, it was possible to create
an automated approach to retrieve the different question patterns in the dataset. Each
question pattern was annotated manually and used to add the intermediate label to each
question in the dataset.

The following contemplation evaluates the quality of these intermediate labels. Table 8
reports the results across the different datasets. The overview includes the performance
on the regular training set, which contains 96,185 questions, and on the reduced training
set, which contains 10,000 questions. This reduced version was sampled from the regular
one. In order to evaluate the performance of the annotated labels, the percentage of valid
queries Accvq and the executional accuracy Accex were observed.

Dataset Size Accvq Accex
Train 10,000 94.1% 90.8%
Train 96,185 94.1% 91.0%
Dev 9,968 94.1% 91.1%
Test 9,952 94.5% 91.2%

Table 8: Evaluation of the Target Labels

These observations show a uniform behavior across the splits of the dataset. About
94% of the produced labels are considered as a valid query, whereas about 91% of all
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queries yield a correct result. This leads to the conclusion, that a model trained on these
labels can achieve an executional accuracy Accex of approximately 91% at a maximum.
Thus, the quality of the intermediate labels represent an important limitation to the
actual performance of the supervised model. At this point, removing the corresponding
question-query pairs from the dataset would be a valid step. As a result one would enable
the model to learn on labels of higher quality. However, this step would influence the
comparability of the results of this thesis. Dodge et al. [Dod+15] used the full dataset to
evaluate different models performing soft-KB lookup.

To maintain full comparability, it was decided to keep the question-query pairs that lead
to incorrect results in the dataset. Nevertheless, an investigation on the causalities behind
this outcome was conducted. This analysis unveiled two reasons for this problem.

First, about 5% of the queries are invalid as they yield no response by the database. This
is due to a design choice of the interface (discussed in Section 4.3.2) between the model
and the Elasticsearch instance. It appeared, that this design is not able to process certain
special characters. Dissolving this problem is difficult, as it would either result in an
increased complexity of the interface or blur the boundaries between the capabilities of
the Seq2Seq model and optimized retrieval methods of Elasticsearch.

The second reason that contributes to imperfect performance of the intermediate labels
is based on ambiguities in the knowledge base. For instance, the training set contains the
following question: "what was the release date of the film the three musketeers?". The
original dataset labels this question with the answer 1939. Indeed the knowledge base
includes a movie named the three musketeers released in 1939. Nevertheless, there are four
other movies that share the same name. Those movies were released in 1973, 1993, 1994
and 2011 respectively. This example highlights the problem of ambiguities in the dataset.
It causes about 1% of the invalid queries and the gap of about 3% between the share of
valid queries Accvq and executional accuracy Accex. Regarding the experiments of Dodge
et al. [Dod+15] one can presume that they face the same problem with ambiguities.

The analysis of the produced intermediate labels indicate an approach based limitation.
Reflecting the trade-off between the adjustment of this miss-behavior and resulting loss of
comparability lead to the conclusion to accept imperfect labels but have full comparability.
Furthermore it was shown, that ambiguities in the dataset cause correctly annotated
questions to fail in execution.

5.3 Training with Intermediate Labels

This section evaluates the performance of the supervised variant of the proposed dialog
system. As introduced in Chapter 4.1.4, it is trained on question-query pairs and not on
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the actual answer that was retrieved from the database. However, an end-to-end dialog
system will be evaluated on the performance on question-answer pairs. Therefore, the
following subsection provides an analysis that considers both aspects. Furthermore, it
will be shown how the different slots of the interface are learned. Later on in this chapter,
the generalization capability of the model will be discussed.

5.3.1 General Performance of the Supervised Model

In order to analyze the models performance on question-query pairs as well as the quality
of the answers retrieved from the database, several metrics are used. First, the query
match accuracy Accqm, which is related to the optimization while training on intermediate
labels. Second, the valid query accuracy Accvq, which shows the share of produced valid
queries. Finally, the executional accuracy Accex, which shows the share of questions
that were answered correctly. Table 9 presents the results that were obtained during our
experiments.

Train Size Run Accqm Accvq Accex

10k

1 97.3% 93.0% 89.2%
2 96.9% 92.7% 88.8%
3 97.3% 93.1% 89.4%
∅ 97.2% 92.9% 89.1%

96k

1 99.7% 93.9% 90.6%
2 99.7% 93.9% 90.5%
3 99.7% 93.9% 90.6%
∅ 99.7% 93.9% 90.6%

Table 9: Performance of the Model Trained with Intermediate Labels

It appears, that the dialog system performs well on both sizes of the training set and
approaches the upper performance boundary of 91.2% executional accuracy, which was
discussed in the previous section. On the larger training set it was observed, that the
model learns fast and improves the quality of its prediction for all slots in the interface in
every step. Training on this dataset was stopped after the query match accuracy exceeded
99.5% and the task was therefore considered as solved. For all three runs this happened
to be between epoch 8 and 11. Models trained on the reduced dataset did not solve the
task. However they achieved an average query match accuracy of 97.2%. Compared to
the observations on the large training set, learning the different slots of the query interface
went not straightforward. The performance on the reduced training set will be analyzed
in the subsequent section.
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5.3.2 Analysis of Learning on the Reduced Training Set

This section analyzes, how the performance developed during training on the reduced
dataset. Therefore, the adjustments of the models predictive behavior were observed.
Figure 24 shows the average performance observed while training the model on 10k ex-
amples. It illustrates the accuracy of the single slots: QF, QE and RF, as well as the
correctness of the complete query. As one can see, it takes 9 epochs until the model
produces queries that yield the correct result after they were operated. Between epoch 10
and epoch 20 the query match accuracy increases rapidly and after 20 epochs, the curve
saturates.

Figure 24: Learning Curve of the Supervised Model

Although the query match accuracy over time is a helpful indicator, it provides no infor-
mation about the dynamics within the system. The further analysis will emphasize the
adjustments in the initial phase of the experiments. Already after the first epoch, the
accuracy of the QF and RF slot increased significantly. However, this is due to the fact,
that the model selected the predominant category to fill these slots. Figure 25 (a) shows
the entropy of the chosen categories to fill the QF, RF respectively. In addition to the
entropy observed during training, the figure provides the entropy of the labels. As one
can see, the entropy in Epoch 2 is nearly zero for both slots, which means that the model
selects a single category for all samples in the epoch. Despite that, Figure 25 (b) presents
different metrics for the QE slot. In Epoch 2, almost all entities that were predicted by
the model were invalid and therefore hinder the database to retrieve a correct result.

After Epoch 4, one can observe a drop in AccQFqm and AccQFqm . The entropy in both slots
increases from this epoch onwards, which means that the model deviated from choosing the
predominant category and rather selected different ones. Later on, the model recovered
and returned to this strategy in Epoch 8. Nevertheless, it appears that this through
allowed the model to adjust towards the QE slot. The share of invalid queries decreased
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(a) Entropy of the Query and Response Field (b) Query Entity Specific Metrics

Figure 25: Evaluation of the Experiments on the Reduced Training Set

to almost zero in Epoch 8. Furthermore, the quality of the start word ∆start and the end
word ∆end increased from 0.03, 0.20 respectively in Epoch 2 to 0.65, 0.42 respectively in
Epoch 8.

Despite this improvement in the single slots, the model is still incapable to retrieve correct
results from the database based on the produced queries. This is mainly caused by two
reasons. First, as already discussed, the model predicts only the predominant category
for the RF. This makes it impossible to retrieve the correct results for the rest of the
questions, which account for about three quarters of the dataset. Second, as Figure 25
(b) shows, the average length of the predicted entity is 1.14, which does not seem sufficient
to cover the complexity of the dataset. After Epoch 8, the observed metrics indicate a
changing prediction behavior in all slots. While the entropy of the RF slot indicates that
the distribution of predicted categories approaches a similar distribution as the target
categories, the entropy of the QF increases more slowly. Both observations reflect the
increase of the accuracy in both slots shown in Figure 24. Furthermore, one can see that
the model predicts longer entities over time which enhanced the quality ∆start and ∆end

to almost one. This suggests, that most of the entities were predicted correctly, which is
confirmed by AccQEqm .

One can conclude that the model trained supervised on the reduced dataset learns as
follows. In the phase after initialization, the model tends to predict the predominant
category for QF and RF. Furthermore, the majority of the predicted entities is invalid.
Hence, the model is not able to retrieve correct results from the database. Around Epoch
6, the model adjusts its predictive behavior which leads to a drop in the accuracy of
QF and RF. However, this adjustment enables the model to produce query entities of
better quality. From this point onward, the share of invalid entities decreases, while the
average length of the predicted entities increases. In addition, the model selects different
categories than just the predominant one. The combination of these adjustments lead to
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an improved query match accuracy Accqm, which according to the definition of learning
proposed in Chapter 2.2 indicates that the model actually learned from experience.

5.3.3 Generalization

In order to evaluate the capability of the model to generalize across unseen data, two ques-
tion patterns of every question class were removed from the training set. The remaining
training set consisted of 81k question-query pairs. This resulted into the fact, that during
validation and testing, the algorithm needed to classify question patterns it had not seen
in training. The share of the unseen data was about 14% for both sets. Table 10 provides
the observations of the experiments conducted with a MBS of 256.

Train Size Run Type Accqm Accvq Accex
1 Total 96.7% 91.6% 88.3%

81k 1 Patterns seen in train 99.0% 93.2% 90.0%
1 Unknown patterns 82.4% 84.4% 78.4%
2 Total 95.7% 90.6% 87.4%

81k 2 Patterns seen in train 99.0% 93.2% 90.0%
2 Unknown patterns 75.7% 74.7% 71.8%
3 Total 96.1% 91.6% 87.3%

81k 3 Patterns seen in train 99.1% 93.2% 90.0%
3 Unknown patterns 79.0% 81.9% 74.9%
∅ Total 96.2% 91.3% 87.9%

81k ∅ Patterns seen in train 99.0% 93.2% 90.0%
∅ Unknown patterns 79.0% 80.3% 75.0%

Table 10: Generalization of the Supervised Model

It was found that removing 15.6% of the question patterns during training reduced the ex-
ecutional performance on the complete test set by 2.9% compared to the results presented
in Section 5.3.1. As expected, there was no difference for question patterns the algorithm
already was familiar with. However, the executional performance on question patterns
that were removed during training decreased to 75.0%. A similar drop was observed in
case of the query match accuracy, which fell from 99.7% to 79.0%, and the share of valid
queries, which was reduced to 80.3%.

Further investigation on the mis-classifications revealed a reduced performance in the
prediction of the QE and the RF for unknown question patterns. Observations of the
predictive behavior in the QE slot showed the following. In most of the cases, the model
predicts the first word of the entity correctly, which corresponds to a quality ∆start of
0.97. As depicted in Figure 26, entities with a length of four words or more are predicted
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more often than they actually appear in the ground truth. This means in some cases,
the model includes additional words into the prediction of the QE, which increases the
average length of the predicted entities L̄pred to 2.89 (L̄target = 2.61) and reduces the
quality of the last word of the entity ∆end to 0.86. The execution of such queries will
most likely retrieve empty answers, since a response must contain all words of the QE.
Therefore, one can conclude that the adjusted behavior in the QE slot contributes to the
drop in all three performance metrics (Accqm, Accvq and Accex).

Figure 26: Distribution of the Entity Lengths in Run 2 (Unknown Patterns)

Moreover, the performance of the RF AccRFqm dropped from 99.4%, for the patterns seen
in training, to 89.7%, for the patterns not seen in training. This drop is mainly caused
by samples which have actor as their RF ground truth. In this cases, it was observed
that the model tended to predict author as the RF. It appears that there are only seven
question patterns which address the RF actor and two of them were removed to test the
models capability to generalize.

As about 75.0% of the knowledge base entries include an author, most of the produced
query will retrieve an answer and are therefore considered a valid query. This means, that
the faulty predictive behavior will mainly cause Accqm and Accex to drop.

5.4 Training with Policy Gradient

Training the model architecture with policy gradient is based on the question-answer pairs
of the original dataset. This section will outline several observations that were obtained
during training. First, the influence of the reward function will be discussed. It was found
that the design used by Zhong, Xiong and Socher [ZXS17] was not sufficient to foster
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learning. The adjustment of the reward function lead to an improved performance. Later
on, the effect of introducing a exploration bonus for rarely selected actions is evaluated.
Finally, the capability of the model to generalize on unseen data will be discussed.

5.4.1 The Design of the Reward Function Matters

In this chapter, the outcome of the application of different reward functions is discussed.
Throughout this chapter the exploration bonus will be inactive. The initial experiments
in this thesis were conducted with the same reward function as Seq2SQL [ZXS17], which is
defined as: R = [−2,−1,+1]. However, it was experienced that in this setting the model
did not learn to produce queries, which retrieve correct results when executed against the
Elasticsearch. Therefore, this section will start by discussing the difference between the
experiments in this thesis and the setting of Zhong, Xiong and Socher [ZXS17]. Afterwards
the obtained results will be presented.

While this work uses the MovieDD, Seq2SQL is trained on the WikiSQL dataset. Such
is an open-domain dataset, which provides both, question-query and question-answer
pairs. The size of the WikiSQL is comparable to the MovieDD. Although, the number
of categories in WikiSQL is significantly larger. The dataset is designed to test the
generalization across predicted categories. Zhong, Xiong and Socher [ZXS17] trained their
model for 300 epochs, whereas this implementation uses 50 epochs as the standard training
interval. This choice is an arbitrary decision and based on runtime issues. Furthermore,
they implemented their model with 200 units at each hidden layer, while this model
consists of 100 units. Finally, they use a network-architecture similar to the one proposed
in this thesis as one out of three components for their Seq2SQL model, which makes it
more complex and powerful. Based on their experiments, they report, that training their
Seq2SQL by policy gradient improves the performance by a small margin [ZXS17].

In contrast the experiments conducted in this thesis show that a model trained with
the reward function R = [−2,−1,+1] is not able to retrieve correct results. Table 11
provides an overview of 18 runs, which where performed on the reduced training set with
different MBSs (128, 256) and three different reward functions. In addition, the table
shows another 6 runs that were performed on the original training set. It appears, that
the reward functions R = [−2,−1,+1] and R = [−2,−1,+5] enable the model to produce
valid queries but queries yield poor results when executed.

In case of these reward functions, the conducted experiments indicate that the model acts
myopic and focuses on short-term rewards. As the production of a valid query leads to a
reward of -1 instead of -2, it seems possible that the model gets trapped in local optima, if
it produces about 90% or more valid queries. Further analysis of the corresponding runs
revealed the following. Across all runs, the model keeps a very simple schema to produce
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MBS 128 MBS 256
Train Size Rewards Run Accvq Accex Accvq Accex

10k [-2, -1, +1]

1 99.1%1 0.0%1 97.1% 0.0%
2 97.8% 0.1% 92.2% 0.0%
3 99.3% 0.0% 94.7% 0.0%
∅ 98.7% 0.0% 94.7% 0.0%

10k [-2, -1, +5]

1 97.9% 0.0% 95.8% 0.0%
2 98.3% 0.0% 96.6% 0.0%
3 96.0% 0.0% 88.1% 0.1%
∅ 97.4% 0.0% 93.5% 0.0%

10k [-2, -1, +25]

1 64.1%1 17.7%1 62.9% 29.2%
2 62.9% 17.0% 64.1% 18.0%
3 63.6% 17.4% 65.4% 45.8%
∅ 63.5% 17.4% 64.1% 31.0%

96k [-2, -1, +25]

1 89.4% 25.4% 90.1% 68.6%
2 88.4% 34.6% 88.5%1 47.4%1

3 86.2% 47.5% 71.4% 47.5%
∅ 88.0% 35.8% 83.3% 54.5%

Table 11: Evaluation of Different Reward Functions

queries and does not adjust on different question patterns. Except for a single run, the
entropy of the QF HQF (p) and the entropy of the RF HRF (p) where smaller than 0.05.
This means, that with a few exceptions, the model uses a single category to predict the
corresponding slot. Appendix A.3 provides a detailed overview of the figures used in this
discussion. Furthermore, it contains an analysis of the first run with the reward function
R = [−2,−1,+1] and MBS 128, which showed a QF entropy of 0.33. In addition to the
fact that the model predicts almost always a single category, it was found that it also kept
the complexity of the QE at very low level. This is indicated by the quality measures
∆start and ∆end, which were 0.29 and 0.032 at a maximum, and 1.08 was the largest
observed average query length L̄, which was found. Despite this simplistic predictions it
is worth noting that the share of invalid entities is at a very low level all the time. This
supports the conclusion that the model optimizes towards valid query production.

While Table 11 only shows the results on the reduced training set for the reward func-
tions R = [−2,−1,+1] and R = [−2,−1,+5], the same behavior was observed for
R = [−2,−1,+1] on the large training set (96k). The reward setting R = [−2,−1,+5]

was not tested on the original dataset. Instead another reward function R = [−2,−1,+25]

was considered. The consequences of this adjustment will be discussed subsequently.
1Appendix A.3 provides additional details about these runs.



5 RESULTS AND DISCUSSION 77

First, the change of the reward function had an impact on the prediction of the QE. The
quality metrics ∆start and ∆end increased significantly. A quality ∆ of 0.5 would indicate
that the index of the prediction differs in average one position from the target index. At
this point it is worth noting that all configurations exceeded this threshold. Furthermore,
the average entity length L̄pred nearly doubled to more than 2. It appears that the model
captures the actual entities contained in the question. This is confirmed by an increased
query match accuracy of the QE AccQEqm , which is above 50% for all observations. Given
the initial reward function, this metric did not exceed 2%.

Second, it was found that the models predictive behavior for the RF changed. While the
prediction was previously dominated by a single category, an enlarged entropy HRF (p)

suggests that its now a balanced distribution over several categories. As a result, the
accuracy of the RF AccRFqm grew. However, it was observed that different configurations
corresponded to different level of AccRFqm . On both sizes of the training set, the MBS 256
achieved higher values than MBS 128. This reflects the hierarchy one can observe on the
executional accuracy in Table 11.

Third, while predicting the QF, the model sticked to the behavior of choosing a single
category over all samples. The QF entropy HQF (p) was zero in all but one run. Fourth,
the share of produced valid queries Accvq dropped while training the model with the new
reward function on the reduced training set.

Finally, the improved predictions of the QE and the RF increase the performance of the
whole dialog system. It is now able to produce queries that retrieve correct answers from
the database. However, the model is still limited in its capabilities. On the reduced
dataset it achieves a Accex of 45.8% at a maximum. Furthermore, it was found, that
the executional accuracy varied by a significant margin during the different runs in the
different configurations. Only the performance of the model using a MBS of 128 on the
reduced training set seemed to be stable.

In conclusion, the conducted experiments indicate that the performance of the model
depends on the scale of the rewards. While the impact on the predictive behavior of the
model was analyzed, this section provided no discussion about possible reasons of this
phenomenon. It appears that the feedback signal provided by low positive rewards, which
are given for correct results, are not sufficient for the model to overcome local optima.
On the algorithm side, the rewards influence the weight updates due to the expected
return. According to Arulkumaran et al. [Aru+17] this one is computed by averaging over
trajectories, which are the samples in the mini-batch. It seems like this averaging over the
batch size might cause the vanishing feedback signal in case of sparse positive rewards.
Indeed, there is neither empirical nor theoretical proof for this contemplation. Therefore,
further investigations are necessary to confirm the observed results and undertake the
theoretical reasoning.
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5.4.2 Exploration with Boni

The previous section identified that the model tends to predict always a single category
for the QF. Regarding the RF there is more variation in the performed actions. It appears
that a deviation from this strategy is not fostered by the design of the proposed MDP.
However, it is a desired behavior of the agent to not only select one category for the QF.
Accordingly, an adjustment of the MDP was conducted. This included the introduction
of a count-based exploration bonus as an additional component to the reward function.
In Table 12 one can see the effect of the bonus for a MBS of 128 and 256.

MBS 128 MBS 256
Train Size Bonus Run Accvq Accex Accvq Accex

96k False

1 89.4% 25.4% 90.1% 68.6%
2 88.4% 34.6% 88.5% 47.4%
3 86.2% 47.5% 71.4% 47.5%
∅ 88.0% 35.8% 83.3% 54.5%

96k True

1 81.4% 70.8% 93.3% 75.2%
2 96.4% 90.8% 92.0% 81.3%
3 96.2% 91.0% 95.9% 90.7%
∅ 91.3% 84.2% 93.7% 82.4%

Table 12: Introducing an Exploration Bonus Improves Performance

Adding a count-based bonus for rarely executed actions yields a sharp increase in per-
formance. Given a MBS of 128 training with a regular reward function achieved 35.8%
executional accuracy in average, the system with boni achieved 84.2% in average. In Run
2 and 3 (with boni) the model approaches the best possible performance for the supervised
model. With a MBS of 256 the performance of training without an exploration bonus
is higher than the one of runs with MBS 128. After the introduction of the exploration
bonus both MBSs perform on the same level. Furthermore, one can observe that Accvq
slightly increased for both configurations.

Figure 27 shows the influence of the exploration bonus on the average performance of
the reduced training set and the original training set. As one can see, it causes counter
intuitive results on the reduced training set. Even after 50 epochs of training, the valid
query accuracy Accvq for runs that used an exploration bonus is significantly lower than
for runs without an exploration bonus. Furthermore, it takes about 30 epochs for the
model trained with an exploration bonus to produce a significant amount of queries that
retrieve a correct result. After the models terminate the executional accuracy Accex of
the runs with an exploration bonus is slighlty higher than the ones of the runs without a
bonus.
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(a) Reduced Training Set (10k) (b) Original Training Set (96k)

Figure 27: Evaluation of the Experiments with Mini-Batch Size 128

On the right hand side of Figure 27 one can see, that the exploration bonus slows down
the improvement of the performance. Until epoch 6, the models trained without a bonus
produce more valid queries and retrieve more correct responses. After this point, both
metrics increase significantly for the models trained with an exploration bonus. After
around 12 epochs one can observe that the curves of all metrics despite the valid query
accuracy of the models trained without bonus saturate.

5.4.3 Generalization

This section investigates on the generalization capabilities of the model trained with
policy gradient. Like for the evaluation of the supervised model (Chapter 5.3.3), about
15k samples were removed during training time.

It was found that the model trained with policy gradient also generalizes across unseen
question patterns. Table 13 shows the obtained results. In each of the three runs, the
model achieves an executional accuracy of more than 60% on the unseen data. This
is less compared to the generalization of the supervised model. However, the models
trained with policy gradient achieve a higher share of valid queries on the unseen data
compared to training on intermediate labels. This is due to the fact that the reward
function incorporates a feedback signal, which values valid queries over invalid queries.
While Accvq shows no differences between patterns seen in training and unknown patterns,
there is a is a gap of 12% to 14% in Accex. As discussed in 5.3.3 this drop is influenced
by the removal of samples which have actor as their RF ground truth.
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Train Size Run Type Accvq Accex
1 Total 94.4% 87.3%

81k 1 Patterns seen in train 94.9% 89.3%
1 Unknown patterns 91.5% 75.6%
2 Total 91.3% 78.5%

81k 2 Patterns seen in train 91.5% 80.0%
2 Unknown patterns 89.5% 68.7%
3 Total 88.9% 74.4%

81k 3 Patterns seen in train 89.9% 76.3%
3 Unknown patterns 83.3% 62.6%
∅ Total 91.5% 80.1%

81k ∅ Patterns seen in train 92.1% 81.9%
∅ Unknown patterns 91.4% 69.0%

Table 13: Generalization of the RL Model

5.5 Comparison to Soft-KB lookup

This section provides a comparison of the results found in this thesis and the ones reported
by Dodge et al. [Dod+15]. While the model implemented in this study interacted with
the KB via hard-KB lookup, Dodge et al. used soft-KB lookup.

Table 14 shows the combined results. Dodge et al. implemented six different models
on the Movie Dialog Dataset. The performance of an LSTM, supervised embeddings
and an ensemble of supervised embeddings is not competitive. For a discussion of these
observations see Dodge et al. [Dod+15].

Methods Lookup Type Accex
QA system [BCW14; Dod+15] Soft 90.7%

LSTM [Dod+15] Soft 6.5%

Supervised embeddings [Dod+15] Soft 50.9%

MemN2N [Dod+15] Soft 79.3%

Joint supervised embeddings [Dod+15] Soft 43.6%

Joint MemN2N [Dod+15] Soft 83.5%

This thesis (intermediate labels) Hard 90.6%

This thesis (policy gradient) Hard 84.2%

Table 14: Soft-KB Lookup vs. Hard-KB Lookup

As one can see, the model trained with policy gradient performs on a competitive level
to the ensemble of Memory Networks and slightly better than a single Memory Network.
An analysis on the differences in runtime and demand on resources would require further
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experiments since Dodge et al. [Dod+15] do not report such details. Since their model
uses an attention mechanism over all entries stored in the KB it is likely to improve the
runtime of their approach by utilizing additional computational power (GPUs). The bot-
tleneck of the model trained with policy gradient is the interaction with the Elasticsearch
instance. An enlarged computational power does not guarantee to speed up this interac-
tion. Instead, one should focus on improving the interaction between the model and the
Elasticsearch instance. Parallelizing the execution of multiple queries would require to
set up multiple Elasticsearch instances storing the same knowledge base. However, this
would lead to an overhead due to coordination tasks.

Despite, one should investigate if training an ensemble of the proposed Seq2Seq models can
improve the overall performance. Regarding the observations of Dodge et al. [Dod+15]
training an ensemble of models lead to an improvement in case of Memory Networks.
However, training an ensemble of supervised embeddings reduced the performance by
7.3%.

Both, the ensemble of Memory Networks and the model trained with policy gradient are
outperformed by the baseline reported in Dodge et al. [Dod+15]. Such is a standard QA
benchmark which learns embeddings that match questions with database entries and was
proposed by Bordes, Chopra and Weston [BCW14]. The gap between the performance of
the model presented in this thesis and the QA baseline is 6.4%. Leveraging intermediate
labels produced by human interaction enables the proposed model to approach the QA
baseline and outperform all other methods presented by Dodge et al. [Dod+15].

The experiments conducted in this thesis show that interaction with a KB can be achieved
by soft-KB lookup and hard-KB lookup on a competitive level. It appears, that both
approaches tend to have certain advantages over the other one. Therefore, it depends on
the use case which one should apply.
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6 Conclusion and Outlook

This master thesis dealt with a problem setting in the domain of end-to-end dialog sys-
tems. Therefore, this thesis presented the state-of-the-art in dialog tasks. Since a vast
amount of today’s informational resources is stored in database, the interaction with a
knowledge base was included into design of the system architecture. Typically there are
two different ways how to interact with a knowledge base. Models can either perform
soft-KB lookup, which means that they compute a probability distribution over a tab-
ular knowledge base and detect the most important entry, or models perform hard-KB
lookup, which means that they produce actual database queries. This thesis aimed for
the latter case. However, this approach shows the problem that database operations are
non-differentiable which impedes the training process of the model.

This thesis examined the capabilities of a state-of-the-art Seq2Seq model on a large scale
question answering dataset, the Movie Dialog Dataset [Dod+15]. Thereby, two ways
of training the model were investigated. On the one hand, a supervised training method
based on intermediate labels was determined. This approach has two major shortcomings.
Firstly, it requires human interaction to produce intermediate labels, which can be very
cost intensive. Secondly, this approach does not consider the results that are obtained
after a query was executed. During the conducted experiments, this model outperformed
soft-KB lookup methods reported by Dodge et al. [Dod+15]. Furthermore, it yields
competitive results to a specialized QA system [BCW14]. This leads to the conclusion
that training on intermediate labels is a reliable option as long as it is possible to produce
high quality labels with minimal effort and reduced human interaction. However, it
appears that this limits such systems to the application in narrow domains.

On the other hand, this thesis applied the REINFORCE algorithm to train the Seq2Seq
model. Since this approach takes natural language question as inputs and is trained on the
database response after the execution of a query, it does not require intermediate human
interaction. However, it was found that the design of the underlying MDP is crucial
for the performance of the model. It was observed that the model tended to produce
simplistic question schema, since it got stuck in local optima of the reward function.
The introduction of a count-based exploration bonus solved this problem and caused
a significant boost in performance. Although, it appears that training a model with
deep reinforcement learning causes instabilities. For instance training the model with an
exploration bonus resulted in a gap of 20% between two runs with the same configuration.
Nevertheless, the average performance of training the proposed architecture with policy
gradient was on the same level as the Joint MemN2N model by Dodge et al. [Dod+15].
The QA system [BCW14] and the supervised approach of this thesis performed better.
For a more detailed analysis of the model’s stability, further experiments need to be
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conducted.

Comparing the results of the two ways to train the model leads to two additional con-
clusions. Firstly, deep reinforcement learning is more data demanding than supervised
training. Training the model with intermediate labels achieved satisfying results on the
original training set (96k) and on the reduced training set (10k), whereas the training with
policy gradient was only successful on the original training set. Secondly, the application
of a state-of-the-art Seq2Seq architecture enables the model to generalize on unseen ques-
tion patterns. The influence on the way to train the model on its capability to generalize
is negligible.

Eventually, the conducted experiments revealed two reasons why one might prefer soft-
KB lookup over hard-KB lookup. Since training the model with policy gradient requires
an interaction with the database it is computational expensive. Running the original
dataset on a single GPU took up to 12 hours of training, while training with intermediate
labels on the same dataset only took 1 hour. This runtime issue represents a limitation
for models that perform hard-KB lookup in general and for the experiments conducted
in this thesis in particular. Furthermore, it was found that the interface used to connect
the components of the system architecture, caused about 5% of the intermediate labels
to be assessed as invalid queries. The analysis of this problem revealed the relationship
to an important design choice. However, adjusting this design choice was not possible,
as it would have blurred the line between the capabilities of the proposed Seq2Seq model
and the capabilities of Elasticsearch. This problem is known as the credit assignment
problem. This finding is not limited to this thesis, but includes all kind of dialog agents
that perform hard-KB lookup. Systems, which perform soft-KB lookup do not face this
problem, as they access the knowledge base directly.

Despite this final remarks the obtained results are promising for the following reasons.
Since a large share of information is already stored in databases, it is more likely to access
the existing structure with hard-KB lookup instead of redefining them into tabular forms.
While this seems possible for relational databases like SQL, it is nearly impossible for
non-relation databases. Furthermore, the potential of hard-KB lookup is not exhausted.
Regarding an interaction with Elasticsearch further research might focus on utilizing the
score of a retrieved answer. In this way one could reduce the uncertainty which is caused
by the non-differentiable database operation. Given the retrieved top response has a low
score, it is likely that the query is not sufficient to search for the ground truth. In contrast,
if there are multiple response with a score above a certain threshold, it seems reasonable
to introduce a rank-based reward to weaken the influence of ambiguities like the movie
the three musketeers. In this case, the model would receive a reduced positive reward if
the corresponding movie is ranked third or fourth instead of a negative reward.

One can conclude that there is still a long way until humans will interact with fully
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functional dialog systems. Regarding the experiments conducted in this thesis one can
think of two directions of subsequent steps. On the one hand, one could investigate on the
models performance on other tasks and corpora. This includes both ways of training the
model and would allow a comparison to other models. On the other side, one could use
the proposed architecture in order to design a more advanced model. This thesis relied on
REINFORCE without a baseline, the next logical step would be to incorporate baselines
or to implement an actor-critic approach. Regarding the discussions in Section 2.3.3 such
might stabilize of the results. In addition, another exploration method or a different kind
of embedding offers potential for improvement. Finally one can think of resolving the
single turn interaction structure and test the architecture on interactions with multiple
turns. Most likely this would require a memory module to that the model can write and
attend.
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A Appendix

A.1 Excerpt of the Proof of the Policy Gradient Theorem

∇J(θ) = Eπ

[∑
a

qπ(St, a)∇θπ(a|St, θ)

]
× π(a|St, θ)
π(a|St, θ)

= Eπ

[∑
a

π(a|St, θ)qπ(St, a)
∇θπ(a|St, θ)
π(a|St, θ)

]
At ∼ πθ

= Eπ

[
qπ(St, At)

∇θπ(At|St, θ)
π(At|St, θ)

]
∇ log x =

∇x
x

= Eπ

[
qπ(St, At)∇θ log π(At|St, θ)

]
Eπ
[
Gt|St, At

]
= qπ(St, At)

= Eπ

[
Gt∇θ log π(At|St, θ)

]

(A.1)

A.2 Implementation Details

This thesis is implemented in Python (Version 2.7.14). The following list represents the
main packages that were used for implementation and visualization in alphabetic order:

• Elasticsearch-dsl (v6.1.0)

• Elasticsearch-py (v6.1.1)

• Matplotlib (v2.1.1)

• Numpy (v1.13.3)

• Pytorch (v0.3.0)

• Scikit-learn (v0.19.1)
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A.3 The Design of the Reward Function Matters

This appendix provides additional details about Section 5.4.1

A.3.1 Average Metrics

Table 15 provides an overview of the average metrics obtained in the experiments.

Train Size Rewards MBS ∆start ∆end L̄pred κ HQF (p) HRF (p)

10k [-2, -1, +1]
128 0.170 0.005 1.01 0.7% 0.120 0.048
256 0.198 0.015 1.05 3.1% 0.011 0.017

10k [-2, -1, +5]
128 0.166 0.005 1.03 1.4% 0.0 0.001
256 0.218 0.022 1.06 3.0% 0.013 0.018

10k [-2, -1, +25]
128 0.73 0.89 2.3 0.3% 0.0 0.760
256 0.67 0.83 2.2 0.3% 0.0 0.753

96k [-2, -1, +25]
128 0.53 0.73 2.0 0.2% 0.0 0.579
256 0.71 0.83 2.1 0.4% 0.146 0.875

Table 15: Average Metrics on Different Configurations

A.3.2 Analysis of Different Runs

Table 16 summarizes the hyperparameters and results of the runs and Figure 28 to 30
illustrate the distributions of average entity length and the confusion matrices respectively.

(a) The model develops a simple schema to produce
valid queries (A)

(b) The model learns to retrieve the entities out of
the questions (B)

Figure 28: Distribution of Entity Lengths
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A B C
Train Size 10k 10k 96k
Rewards [-2, -1, +1] [-2, -1, +25] [-2, -1, +25]
Run 1 1 2
MBS 128 128 256
Bonus False False False
Accvq 99.1% 64.1% 88.5%
Accex 0.0% 17.7% 47.4%
AccQFqm 4.3% 72.3% 72.3%
AccQEqm 0.0 % 68.3% 51.8%
AccRFqm 0.5% 24.5% 61.4%
∆start 0.162 0.77 0.64
∆end 0.001 0.9 0.7
L̄target 2.78 2.78 2.78
L̄pred 1.01 2.3 1.94
κ 0.5% 0.5% 0.4%

HQF (p) 0.333 0.0 0.0
HRF (p) 0.128 0.745 0.861

Table 16: Summary

(a) Query Field (b) Response Field

Figure 29: Confusion Matrices of Query and Response Field (B)
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(a) Query Field (b) Response Field

Figure 30: Confusion Matrices of Query and Response Field (C)
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