
Building Embedded 
Systems with AOSP
Why You Should Consider, 
Best Practices and Pitfalls

Anna-Lena Marx
Meetup Erlangen, 14. Juni 2023



Anna-Lena Marx

Embedded Systems Dev at inovex

● Linux Kernel
● Yocto
● Android Embedded

B.Sc. Computer Science

M.Sc. Embedded Systems

B.Eng. Electrical Engineering - ongoing Hobby

2

@Allegra3141

 Allegra42

Allegra
@social.linux.pizza







Why you should consider 
AOSP for embedded 

systems

An introduction



What’s the Android Open Source Project?

Two levels of
compatibility:

AOSP compatibility
defined by Compatibility
Definition Document (CDD)

Android compatibility
CDD plus
- Vendor Software Requirements (VSR)
- Vendor Test Suite (VTS)
- Compatibility Test Suite (CTS)

Additional step: 
Licensing Google Mobile Services (GMS)

● Google Apps (Youtube, Maps, Gmail, …)

https://source.android.com/docs/core/architecture

https://source.android.com/docs/core/architecture


Kernel philosophy



What the AOSP already does 
for you

The pro side



What’s included from a system engineers perspective

● provides a proven, stable and solid open source platform
● based on Linux
● graphics, video and media support
● connectivity

○ WiFi
○ Bluetooth
○ NFC, …

● secure runtime environment for untrusted apps
● defined APIs between layers
● support for multiple target device types
● optimization for power-efficiency
● sophisticated Hardware Abstraction Layers (HAL)



What’s included from a security perspective

On system level

● SELinux
● ASAN and sanitizer in general during build time
● dm-verity
● hardware keystore (Trustzone)
● OTA (over the air) update mechanism with A/B concept
● read-only system filesystem

On app level

● sophisticated app concept with 
○ secure runtime for untrusted apps
○ app isolation



Benefits for app developers and users

● an UI/UX concept people are already familiar with
○ platform focuses on UX!

● well-known app developer ecosystem
○ standardized APIs with a good abstraction level
○ extensive set of system and third-party libraries
○ pretty good and in depth documentation
○ large eco system of existing apps
○ lots of good Android app developers



12

The downsides of using 
AOSP

Key takeaways



Pain points of the AOSP itself

● very extensive code base 
○ > 200 GB source code
○ needs potent build hardware and lots of compile time

● pretty high target system requirements
● high and increasing complexity

○ steep learning curve
○ lots of layers and abstractions within the system

● internals are continuously morphed
● build system chaos / changing build systems
● painful version updates



Google, SoC vendors and OEMs

● AOSP is open-source but hard to contribute for people outside
● branding as Android and shipping Google apps require certification
● non-transparent partner ecosystem and license agreements

● SoC vendors and OEMs are not interested in selling low and medium 
quantities

● BSPs from SoC vendors
○ may need for a NDA to access the BSP 
○ vendor specific, non-standard additions and build scripts
○ binary blobs (check licenses!)
○ quality depends on vendor



General downsides

● focus on target device types
○ no support on other types or use-cases
○ clear focus on phones and UI-based devices (e.g. cars)

● intended for large volume products or own ecosystems
● OTAs needs own servers, management and good test runs
● few AOSP system engineers available



When is using the AOSP a 
good choice?

And when not?



Consider using the AOSP if…

● you want to build an ecosystem, that
○ targets various devices
○ runs on various hardware targets
○ is maybe open for third party app developers 

● you need an app concept with strong isolation of untrusted 
apps

● you need the advantages of a sophisticated touchscreen UI
● you want to utilize the advantages of the media framework
● you need a GPL free system layer



Don’t use the AOSP

● if the overhead of AOSP does not give you clear advantages e.g.
○ you don’t need a graphics/media stack at all
○ you don’t care about the app concept

● if you’re performance sensitive e.g.
○ boot time needs to be extremely short

● if you have a “small” use-case
○ with limited hardware resources
○ which is cost-sensitive

● if you don’t have the person-power to maintain a full-blown AOSP system
○ you are strongly dependent to a SoC vendor (BSPs)
○ no open community support



Best Practices, 
Recommendations and 

Pitfalls

Getting started



Working with the source

● Use a code search engine like https://cs.android.com/android

● Make developing within AOSP smoother by importing it as Android Studio 
Project
○ source build/envsetup.sh
○ lunch <your-build-config>
○ make idegen && development/tools/idegen/idegen.sh
○ Open android.ipr with Android Studio

■ Wait until indexing is finished
■ If there are issues, see 

https://github.com/flutter/flutter-intellij/issues/1735#issuecomment-376918296 

https://cs.android.com/android/platform/superproject/+/master:development/tools/idegen/README 

https://cs.android.com/android
https://github.com/flutter/flutter-intellij/issues/1735#issuecomment-376918296
https://cs.android.com/android/platform/superproject/+/master:development/tools/idegen/README


Working with the source

Working with the AOSP tree in Android Studio

● Allows general AS features (mostly for Java, but as well for 
native code)
○ Helps with type information
○ Finds usages
○ Nice for system development (Java services, native code, …)

● Pretty comfortable for executing tests 
(gradle build files needed!)

● Allows (Java) debugging from IDE

● No support for building the whole AOSP from the IDE!



Select a platform to start with

Phone, tablet, development board or emulator?

● Just want to start working with AOSP? Use a Google device!
● Emulator is limited in case of working with external hardware, 

kernel and drivers
● Dev boards are often outdated or not longer available 

(officially in AOSP supported ones)
● Use the target platform for your product if possible 

(Reference Board)
○ Be aware of availability issues
○ Differences between reference design and actual device platform
○ Vendor flavoured AOSP BSPs are … different



Vanilla AOSP vs. Board Vendor BSPs

Vanilla AOSP

● Supported by Google
● Standard way of working (as 

documented)
● Latest versions available
● In general not suitable to 

build products
○ Google HW not available
○ Dev boards not suitable 

for production

Great to start

Board Vendor branded BSPs

● Supported by vendor
● Often with custom build scripts
● Diverging workflows (e.g. 

Qualcomm Kernel Build)
● Slow build due to custom logic
● Not all versions for all dev 

boards and platforms
● Updates are delayed
● NDAs, mostly always hard 

getting access

Needed when building products



https://www.opersys.com/downloads/cc-slides/embedded-android/slides-main-clean.html#/13 

https://www.opersys.com/downloads/cc-slides/embedded-android/slides-main-clean.html#/13


Best Practices, 
Recommendations and 

Pitfalls

Tools and Workflow



Version control and working in a multi-repo project

Use Gerrit Code Review!

● proper handling of cross-repo commits
● enforces a clean way of working

○ e.g. with proper, meaningful commit messages
○ nice for code reviews
○ good overview of open change requests, open reviews, …

Gerrit is a pretty ugly frontend in contrast to GitLab, GitHub, … 
but the best tool when working in a multi-repo project as AOSP is!



Continuous integration

Use a container setup!

● can be reused within a CI pipeline
● reproducible between different devs and CI
● easier start for new developers

Use a CI pipeline!

● Working in a multi-repo setup with different teams and changes
in different repos have a large potential to break your environment

● forcing successful CI runs (including tests) as a requirement for 
merging reduce the risk!



Continuous integration and automated tests

Your CI should include:

● building all your targets
● checks for code style (linting)
● testing

○ on real hardware and / or virtual devices
○ use / enhance existing test suites e.g.

■ Compatibility Test Suite (CTS)
■ Vendor Test Suite (VTS)
■ Trade Federation Testing Infrastructure (tradefed/TF)

○ write lots of tests!



Android Virtual Devices (AVD)

Tweak existing configuration to match your hardware device as 
good as possible!

● faster round-trips in development
● can be integrated with CI (e.g. being used for test runs)
● allow easier switching between versions, API levels, … 
● portable, home-office friendly

AVDs do not replace the need for testing and developing on real 
hardware, but they are a great convenience feature!



Anna-Lena Marx

Embedded Systems Dev
inovex GmbH
Ludwig-Erhard-Allee 6
76131 Karlsruhe
anna-lena.marx@inovex.de

Thank you!

30



Further reading

● https://www.inovex.de/de/blog/aosp-advanced-development-tric
ks/

● https://source.android.com/docs/core/architecture
● https://source.android.com/docs/core/architecture/kernel
● https://developer.android.com/studio/run/emulator
● https://www.gerritcodereview.com/index.html
● https://www.opersys.com/downloads/cc-slides/android-debug/sl

ides-main-221201.html#/
●

https://www.inovex.de/de/blog/aosp-advanced-development-tricks/
https://www.inovex.de/de/blog/aosp-advanced-development-tricks/
https://source.android.com/docs/core/architecture
https://source.android.com/docs/core/architecture/kernel
https://developer.android.com/studio/run/emulator
https://www.gerritcodereview.com/index.html
https://www.opersys.com/downloads/cc-slides/android-debug/slides-main-221201.html#/
https://www.opersys.com/downloads/cc-slides/android-debug/slides-main-221201.html#/

