
Glass-To-Glass Latency
in Android
How to debug
the Android Graphics Stack

Stefan Lengfeld
March 12th, 2024 · Munich

2

Stefan Lengfeld

Android and Linux Embedded Developer

● 7+ years at inovex
● 9+ years professional embedded software development
● many more years a linux enthusiast

Main Topics

● Embedded Systems (Linux and Android)
● Linux Kernel
● Build systems
● Linux Graphics Stack

3

stefan.lengfeld
@inovex.de

lengfeld

stefan.lengfeld.xyz

mailto:stefan.lengfeld@inovex.de
mailto:stefan.lengfeld@inovex.de
https://github.com/lengfeld
https://stefan.lengfeld.xyz

What is the glass-to-glass latency?

4

object camera
display

SoC, RAM, busses human eye

Why is the glass to glass latency important?

Augmented reality (AR)
Virtual reality (VR)
Mixed reality (MR)

Configurations

● semi transparent displays
● non transparent displays

with real world camera
blending

5

Test device

Pixel 2 from Google

● first release 2017
● discontinued 2019

But seems outdated,
but the result are still the same
with current hardware.

For my tests:

● Display 60 Hz => 16 ms
● Camera 30 Hz => 33 ms

6

How to measure the glass-to-glass latency? Not!

real stopwatch:
 44,974 ms

image of stopwatch:
44. 891 ms

difference: 83 ms

But: Is this correct?

7

Yes, it’s “correct”!

The more precise answer is
57 - 106 ms.

But why?
8

Test equipment

LEDs, photo-diodes, cables,
resistors, coffee mugs, power supply

Oscilloscope, arduino

Android’s systrace

9

What is systrace? The Android system tracer!

It’s build upon the Linux kernels ftrace tracing framework!

It includes a bunch of kernel events:
processes, scheduler events, irqs, driver subsystem events

And a lot of events from the Android userspace!

And you can use it in our own application:

● Java/Kotlin:
Trace.beginSection(...) Trace.endSection()

● C/C++:
ATrace_beginSection(...) ATrace_endSection()

10

How to use systrace - Part 1

On the commandline:

11

$ $HOME/Sdk/platform-tools/systrace/systrace.py \
--atrace-categories=sched,gfx,hal,irq,ion,camera,sm \
--time=2 \
-o systrace.html \
-a de.inovex.latencytest

$ $BROWSER systrace.html

https://perfetto.dev/ (Next gen version of systrace)
https://developer.android.com/topic/performance/tracing/
https://source.android.com/docs/core/tests/debug/systrace

https://perfetto.dev/
https://developer.android.com/topic/performance/tracing/
https://source.android.com/docs/core/tests/debug/systrace

How to use systrace - Part 2

12

After
four weeks
~15 tests
a bit of cabling
a lot of system traces

I got the following setup:
13

14

Graphic shows

● a systrace graph and
● a oscilloscope capture

which are lined up.

Blue line/voltage:
LED and markes

Yellow line/voltage:
photodiode

15

16

one vertical
gray/white area
is 16ms

Components of the glass-to-glass latency

Timings from the systrace graph and oscilloscope capture:

0-33 ms camera sensor exposure

24 ms sensor to app (onImageAvailable Callback)

~33 ms app to display (GPU, surfaceflinger, vsync)

0-16 ms display scanout

→ The latency is 57 to 106 ms (min, max).

17

● Camera sensor
○ Rolling shutter
○ Skew time

● Display scanout
● Rendering and vsyncs

18

The details:

Sensor - Rolling shutter effect

19

t
2

 - t
1

 := skew timetime

rows

t1 t2

The sensor does not exposure all
pixels at the same time.
The exposure starts row after row.

Results in kind of motion blur like
from digital or analog with a
mechanical shutter camera but
different.

1
2
3

n

Sensor - Skew time

20

The time between the exposure
of the first and the last row
does not depend on the exposure time.

The skew time is always 32 ms

#define LED 4 // pin of the LED

void setup() {
 pinMode(LED, OUTPUT); // Declare an output
}

void loop() {
 digitalWrite (LED, HIGH); // Turn the LED on
 delayMicroseconds (2000); // wait 2 ms
 digitalWrite (LED, LOW); // Turn the LED off
 delayMicroseconds (2000); // wait 2 ms
}

Display scanout

Measurements shows
12,40 ms
60 hz => 16 ms

21

Displays are refreshed:
pixel by pixel right to left
row by row top to down

Rendering and vsyncs

There are three VSYNCs. One hardware and two software VSYNCs:

● HW_VSYNC_0: Hardware starts scanout of next frame
● VSYNC-sf: surfaceflinger starts composition the next frame from the

app screen, the status bar, the buttons and overlays.
● VSYNC-App: App starts rendering the next frame based on new input

In every stage of this pipeline a frame is processed:

→ Tripple buffering

More Infos:
https://source.android.com/docs/core/graphics/implement-vsync

22

https://source.android.com/docs/core/graphics/implement-vsync

23

Finished
with the details!

Let’s go back
to the first graphics.

24

Graphic shows

0-33 ms camera sensor

24 ms camera to app

~33 ms app to display

0-16 ms display scanout

→ The latency is 57-106 ms

25

Recap

Nothing is happening instantly:

● exposure of the different pixels happen at different times
● updating pixels of the display happen at different times

→ The glass to glass latency is a range.

It depends on which pixel you light up and measure:

● first row vs last row of the camera sensor
● first pixel or last pixel of the display

26

I love systrace.

It’s the tool
to inspect and debug
your performance issue
on Android!

27

Thank you!

28

inovex is an IT project
center driven by innovation
and quality, focusing its
services on ‘Digital
Transformation’.

● founded in 1999
● 500 employees
● 8 offices across

Germany

Stefan Lengfeld
Embedded Software Developer

stefan.lengfeld@inovex.de

Schanzenstraße 6–20
51063 Köln

www.inovex.de

Time for questions!

mailto:stefan.lengfeld@inovex.de

Further reading and code

Blogposts:

Motion to photon latency in mobile AR and VR by Daniel Wagner

Why is making good AR displays so hard? by Daniel Wagner

Virtual Reality – Blatant Latency and how to Avoid it by Freddi Jeffries

Collection of my tests and code:

https://github.com/inovex/android-glass-to-glass-latency

Blogpost for this talk:

Glass-To-Glass Latency on Android – How Fast Is Your Smartphone’s Camera
Really? - inovex GmbH

29

https://medium.com/@DAQRI/motion-to-photon-latency-in-mobile-ar-and-vr-99f82c480926
https://www.linkedin.com/pulse/why-making-good-ar-displays-so-hard-daniel-wagner/
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/virtual-reality-blatant-latency-and-how-to-avoid-it
https://github.com/inovex/android-glass-to-glass-latency
https://www.inovex.de/de/blog/the-glass-to-glass-latency-on-android/
https://www.inovex.de/de/blog/the-glass-to-glass-latency-on-android/

From smartphones to dashboards: The era of Android Automotive

Title of my talk:
Glass-To-Glass Latency in Android - How to debug the Android Graphics Stack

Abstract:
What is the glass-to-glass latency in Android? It’s the delay between the camera taking a
picture and the screen displaying the picture again. This presentation is a technical tour
through the Android graphics system and hardware. From the measurement setup, based on
cables, LEDs, photodiodes and an oscilloscope, to camera sensors and the rolling shutter
effect, to displays and refresh rates, to surfaceflinger and vsyncs, and last but not least, to
the ultimate tool to debug most of your performance issues, to Android's systrace.

Link: https://www.meetup.com/inovex-munich/events/299182118/

30

https://www.meetup.com/inovex-munich/events/299182118/

