
Level Up Your Embedded Testing
Game
FRETish, Robot, and Twister: A Dream
Team
Christian Schlotter, Carl Zeiss Meditec AG

Stefan Kraus, UL Solutions SIS

Tobias Kästner, inovex GmbH

Open Source Summit Europe, Vienna
September 17, 2024

Medical is all about Trust
Supporting patients when they‘re most vulnerable

September 17, 2024ZEISS 2

MEDICAL DEVICE

It‘s not only what we care about
Regulators want us to take care of some things, too

• Requirements Management

• Traceability of

• Requirements

• Tests

BUT:

• How to check requirements for
consistency?

• How to derive tests from
requirements?

• How to update tests for changed
requirements?

September 17, 2024ZEISS 4

Raheem, Ahmed & Rashid, Yaseen.
(2021). Tracking Software in the
Automotive Field: Challenges and
Solutions. Journal of Physics: Conference
Series. 1804. 012064. 10.1088/1742-

6596/1804/1/012064. CC BY 3.0

V-model

https://www.researchgate.net/figure/The-scope-of-the-case-study-In-the-model-the-Preparation-or-Planning-category-focuses_fig2_349749364
https://www.researchgate.net/figure/The-scope-of-the-case-study-In-the-model-the-Preparation-or-Planning-category-focuses_fig2_349749364
https://www.researchgate.net/figure/The-scope-of-the-case-study-In-the-model-the-Preparation-or-Planning-category-focuses_fig2_349749364
https://www.researchgate.net/figure/The-scope-of-the-case-study-In-the-model-the-Preparation-or-Planning-category-focuses_fig2_349749364
https://www.researchgate.net/figure/The-scope-of-the-case-study-In-the-model-the-Preparation-or-Planning-category-focuses_fig2_349749364
https://www.researchgate.net/figure/The-scope-of-the-case-study-In-the-model-the-Preparation-or-Planning-category-focuses_fig2_349749364

Our plan for today

September 17, 2024ZEISS 5

NASA FRET
Tool

Executable
Robot Test

Cases

Twister Test
Report

Requirements Engineering

• Many approaches for writing "better" requirements described in
the literature

o Easy Approach for Requirements Syntax (E.A.R.S) by Alistair
Mavin1)

o INCOSE Guide to Writing Requirements2)

o Functional Requirements Elicitation Tool (FRET)3)

• FRET: New semi-formal approach to requirements pioneered by
Anastasia Mavridou et al. @ Robust Software Engineering Group
at NASA

o FRETish Requirements are written in controlled natural language

• Requirements are machine-parsable and can be transformed to
(temporal) logic formulas

o Automated consistency & realizability checking

o Simulation, ...

September 17, 2024ZEISS 6

“It’s not exactly rocket science, is it?”4)

(1) https://alistairmavin.com/ears/

(2) https://www.incose.org/docs/default-source/working-groups/requirements-wg/rwg_products/incose_rwg_gtwr_summary_sheet_2022.pdf

(3) https://github.com/NASA-SW-VnV/fret

(4) https://www.youtube.com/watch?v=THNPmhBl-8I

https://alistairmavin.com/ears/
https://www.incose.org/docs/default-source/working-groups/requirements-wg/rwg_products/incose_rwg_gtwr_summary_sheet_2022.pdf
https://github.com/NASA-SW-VnV/fret
https://www.youtube.com/watch?v=THNPmhBl-8I

FRETish Requirements
A very basic "101" in 5 mins or less

September 17, 2024ZEISS 7

Scope Conditions Component* SHALL* Timing Response*.

General structure of a FRETish Requirement:

What part of the system has to fulfill this requirement?

Learn more at https://github.com/NASA-SW-VnV/fret and

in the excellent tutorial https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

Examples

• The "Flight Controller"

• The "Lighting Subsystem"

* = mandatory

https://github.com/NASA-SW-VnV/fret
https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

FRETish Requirements
A very basic "101" in 5 mins or less

September 17, 2024ZEISS 8

Scope Conditions Component* SHALL* Timing Response*.

General structure of a FRETish Requirement:

What is the system supposed to do?

Learn more at https://github.com/NASA-SW-VnV/fret and

in the excellent tutorial https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

Examples

• Satisfy "maintain speed & maintain
altitude"

• Satisfy Illumination_ON

Boolean & Arithmetic expressions:

• !, & , | , =>, …

• =, !=, <, >, +, *, -, ...

* = mandatory

https://github.com/NASA-SW-VnV/fret
https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

FRETish Requirements
A very basic "101" in 5 mins or less

September 17, 2024ZEISS 9

Scope Conditions Component* SHALL* Timing Response*.

General structure of a FRETish Requirement:

During what portion of the execution is the requirement
supposed to hold?

Learn more at https://github.com/NASA-SW-VnV/fret and

in the excellent tutorial https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

Examples:

• "During landing_operation"

• "In factory mode"

Keywords:

• In, before, after, notin, onlyin, ...

* = mandatory

https://github.com/NASA-SW-VnV/fret
https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

FRETish Requirements
A very basic "101" in 5 mins or less

September 17, 2024ZEISS 10

Scope Conditions Component* SHALL* Timing Response*.

General structure of a FRETish Requirement:

What condition triggers the response?

Learn more at https://github.com/NASA-SW-VnV/fret and

in the excellent tutorial https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

Examples:

• "Upon auto_pilot_enable"

• "Upon request_dim_lighting"

Keywords:

• Upon, if, where, when, unless, …

Boolean & arithmetic expressions:

• !, & , | , =>, =, !=, <, >, +, *, -, ...

* = mandatory

https://github.com/NASA-SW-VnV/fret
https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

FRETish Requirements
A very basic "101" in 5 mins or less

September 17, 2024ZEISS 11

Scope Conditions Component* SHALL* Timing Response*.

General structure of a FRETish Requirement:

When is the response due relative to scope and
condition?

Learn more at https://github.com/NASA-SW-VnV/fret and

in the excellent tutorial https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

Examples:

• "always"

• "within 1 second"

• "after 200 ticks"

Keywords:

• Always, never, eventually, until,
within, before, after

* = mandatory

https://github.com/NASA-SW-VnV/fret
https://ntrs.nasa.gov/api/citations/20220007610/downloads/NFM22Tutorialv5.pdf

Tools for FRETish Requirements
The templates and the editor

September 17, 2024ZEISS 12

• FRET tool can be downloaded from
https://github.com/NASA-SW-VnV/fret (Win/Mac/Linux)

o Need to build from source

• Simple Project Management

o JSON-based Import & Export functionality

https://github.com/NASA-SW-VnV/fret

Tools for FRETish Requirements
The templates and the editor

September 17, 2024ZEISS 13

• FRET tool can be downloaded from
https://github.com/NASA-SW-VnV/fret (Win/Mac/Linux)

o Need to build from source

• Simple Project Management

o JSON-based Import & Export functionality

• Syntax Highlighting

• Automatic Glossary

o Useful to keep terminology consistent across RQTs

• Also captures meta-data

o ID, Comments, ...

o Parent/Child Relationships

https://github.com/NASA-SW-VnV/fret

Tools for FRETish Requirements
The templates and the editor

September 17, 2024ZEISS 14

• FRET tool can be downloaded from
https://github.com/NASA-SW-VnV/fret (Win/Mac/Linux)

o Need to build from source

• Simple Project Management

o JSON-based Import & Export functionality

• Syntax Highlighting

• Automatic Glossary

o Useful to keep terminology consistent across RQTs

• Also captures meta-data

o ID, Comments, ...

o Parent/Child Relationships

• Pre-defined templates for common scenarios

o Very convenient for FRETish starters

• Many more features related to model checking and extracting
formal expressions from the requirements

o Not yet relevant for us

https://github.com/NASA-SW-VnV/fret

The digitally controlled microscope
An example is worth a thousand theories

September 17, 2024ZEISS 15

Illuminator w/

Illumination Controller

Stage w/

Stage Controller

Nose Piece w/

Nose Piece Controller

Tube w/

Tube Motion Controller

Even microscopes need digital
controls these days ;-)

• Precise focus control

• Precise illumination control

• Automated positioning of sample

• Automated change of objective
https://github.com/ZEISS/fretish_robot/tree/main/ex
amples/digital_microscope

Microscope by Cals idyrose, CC BY 2.0, https: //commons.wikimedia.org/w/index.php?curid=105318937

https://github.com/ZEISS/fretish_robot/tree/main/examples/digital_microscope
https://github.com/ZEISS/fretish_robot/tree/main/examples/digital_microscope

The digitally controlled microscope
FRETish Requirements for non-rocket things

IN "(sample_prep|capture)" mode UPON request_illuminate_on the illumination_controller SHALL within 200 milliseconds

SATISFY (illumination_on & actual_brightness = configured_brightness & answer_request_ok).

IN "(sample_prep|capture)" mode UPON request_brightness_increase the illumination_controller SHALL within 200 milliseconds

SATISFY IF (illumination_on & !(actual_brightness = max_brightness))

THEN configured_brightness_increased_by_10_percent & answer_request_ok.

The illumination_controller SHALL always

SATISFY configured_brightness <= max_brightness & configured_brightness >= min_brightness.

September 17, 2024ZEISS 16

Scope Conditions Component* SHALL* Timing Response*.

The digitally controlled microscope
FRETish Requirements for non-rocket things

IN "(sample_prep|capture)" mode UPON request_change_objective the nose_piece_controller SHALL within 1 second
SATISFY objective_lens_changed_clockwise_ok & answer_request_ok.

IN tube_moving mode UPON request_change_objective the nose_piece_controller SHALL within 100 milliseconds SATISFY
answer_request_denied.

IN "(normal|homing)" mode UPON request_move_up the tube_motion_controller SHALL within 200 milliseconds

SATISFY IF !tube_upper_end THEN (tube_moving_upwards & answer_request_ok).

Upon request_move_up the tube_motion_controller SHALL always

SATISFY IF tube_at_upper_end THEN tube_position_hold.

September 17, 2024ZEISS 17

Scope Conditions Component* SHALL* Timing Response*.

Our plan for today

September 17, 2024ZEISS 18

NASA FRET
Tool

Executable
Robot Test

Cases

Twister Test
Report

Robot Framework
Human-readable, yet machine-executable

• Open-Source Automation Framework

• Very mature, development started in 2005

• Keyword-driven

• Supports several testing methodologies like Behavior Driven
Development (BDD)

• Also used for Robotic Process Automation (RPA)

• Very popular for end-to-end testing in web technologies

• Funded by non-profit Robot Framework Foundation

• Supported by Zephyr’s Test Runner Twister

• Allows to write human-readable test specifications that can be
executed automatically

September 17, 2024ZEISS 19Robot Framework logo: CC-BY SA 4.0

https://robotframework.org/

https://github.com/robotframework/visual-identity/blob/master/logo/robot-framework.svg
https://robotframework.org/

*** Keywords ***
Login User

[Arguments] ${login} ${password}
Set Login Name ${login}
Set Password ${password}
Execute Login

Robot Framework
Let’s look at a simple example

September 17, 2024ZEISS 20

*** Test Cases ***
Login with Password

Connect to Server
Login User ironman 1234567890
Verify Valid Login Tony Stark
Close Server Connection

def set_login_name(self, login):
'''Sets the users login name and stores it for authentication.'''
self.login = login
info(f'User login set to: {login}')

keywords.resource

CustomLibrary.py

→

Robot Framework logo: CC-BY SA 4.0

https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#creating-keywords

TestSuite.robot

https://github.com/robotframework/visual-identity/blob/master/logo/robot-framework.svg
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html

Our plan for today

September 17, 2024ZEISS 21

NASA FRET
Tool

Executable
Robot Test

Cases

Twister Test
Report

From FRET to Robot
On the shoulders of giants

September 17, 2024ZEISS 22

fretish_reqs.json{ }

translate

fret_test.robot

fret-to-robot CLI1)

(1) https://github.com/ZEISS/fretish_robot

Test Report

https://github.com/ZEISS/fretish_robot

Generated Robot testcase
Shown for simple example requirement

September 17, 2024ZEISS 23

{

"scope_mode": "\"(sample_prep|capture)\"",

"regular_condition_unexp_pt": "request_illuminate_on",

"component_name": "illumination_control",

"timingTextRange": [86, 107],

"post_condition_unexp_ft": "((illumination_on & (actual_brightness = configured_brightness)) & answer_request_ok)",

}

$>fret-to-robot fretish_reqs.json --out fret_test.robot

*** Test Cases ***

TEST_REQ-02-01-1

[Tags] REQID=REQ-02-01 SCOPE=sample_prep TRIGGER=request_illuminate_on

In sample_prep mode

Upon request_illuminate_on

Within 200 millisecond Satisfy (($illumination_on and

($actual_brightness == $configured_brightness)) and $answer_request_ok)

fretish_reqs.json{ }

fret_test.robot

Keyword implementation
Teaching FRETish to a robot

FRETish keywords

• Keywords in FRETish syntax to express FRET semantics

• Examples: Upon, Within X (milli)seconds

• Implementation:

o Done in library fretish_robot.FRETlib

o Reduction to built-in keywords

Functional keywords

• Keywords that implement functional behavior

• Example: request_illuminate_on

• Implementation:

o Specific to application logic → additional custom
library

September 17, 2024ZEISS 24

Upon request_illuminate_on

FRETLib.py

def upon(self, event_name):

"""Runs the `event_name` keyword.
Like `Run Keyword` but for FRET read"""

self.built_in.run_keyword(event_name)

CustomLib.py

def request_illuminate_on(self):

"""Turns illumination on.
Done by sending command via shell fixture"""

self.shell.exec_command("illuminate set on")

Our plan for today

September 17, 2024ZEISS 25

NASA FRET
Tool

Executable
Robot Test

Cases

Twister Test
Report

Convert with

fret-to-robot

• To this point FRETish & Robot independent of application domain

• Our domain is embedded computing, and our Firmware runs on Zephyr :-)

• Better still, Zephyr has built-in support for HIL testing called Twister

Our Question then became:

How can we

• make Twister run our Robot files and

• give us back the Robot test results?

Zephyr, Twister and Test Harnesses
All batteries included, yes, or no?

September 17, 2024ZEISS 26

Embedded target

Firmware

Device under Test (DUT)

Twister Test
Monitor

&

stimulus

response

setup

teardown

Hardware in the Loop (HIL) Testing

Current State of Robot integration into Twister
The good, the not-so-good, the missing

• Twister supports different test frameworks called harnesses

• Console, Ztest, GoogleTest but also pytest and Robot

• Twister also supports different test monitors called handlers

• Simulation (native), QEMU, Device

• However, not all harnesses can be used with all handlers

• Robot harness tightly coupled to Renode simulator

• Renode simulator configured only for a small list of (in-tree) boards

• Robot Framework integration provides special keywords

• Start Emulation, Send Key to Uart, Wait For Outgoing Packet

• But currently usable with Renode simulator only

September 17, 2024ZEISS 27Renode logo: © Antmicro, MIT License

https://github.com/renode/renode/blob/master/LICENSE

Our changes and why they were necessary

Goals of the robotframework harness:

▪ Run Robot Test Suites

▪ Execute on native_sim, QEMU and real hardware

▪ Provide Zephyr-specific Robot keywords

▪ Run Device: Flash application and run

▪ Run Command: Send commands via any transport (UART, MQTT, CAN)

Our strategy:

▪ Leverage existing pytest integration and code from (in-tree)
pytest_twister_harness plugin

▪ Invoke the robot CLI the same way as it is done for pytest

▪ Figure out a way to pass relevant information from twister to robot

▪ Implement required keywords using XYZAdapter classes from
pytest_twister_harness

▪ Code available on https://github.com/ZEISS/zephyr/tree/zeiss/fretish_robot

September 17, 2024ZEISS 28

tests:
sample.robot.shell_1:
harness: robotframework
platform_allow:
- native_sim
- mimxrt1020_evk

tags:
- test_framework
- robot

testcase.yaml

Introducing the robotframework Twister harness

https://github.com/ZEISS/zephyr/tree/zeiss/fretish_robot

Our current setup
All together now ...

September 17, 2024ZEISS 29

Embedded target

Firmware

Device under Test (DUT)

Twister Test
Monitor

&

stimulus

response

setup

teardown

fret_test.robot

Microscope, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=105318937

ZephyrLibraryFRETlib

MicroscopeLibrary

fretish_reqs.json{}

▪ Reminder: Robot tests contain general FRETish as well as domain-specific keywords

▪ Domain specific keywords still need to implemented by hand, yet making use of generic
TwisterLibrary for interacting with DUT

Requirements driven Hardware in the Loop (HIL) Testing

Our plan for today
All done!

September 17, 2024ZEISS 30

NASA FRET
Tool

Executable
Robot Test

Cases

Twister Test
Report

Convert with

fret-to-robot

Execute with

Twister

What we achieved so far
If it doesn't scale it ain't worth a penny

September 17, 2024ZEISS 31Reports Flat Icon.svg and Checklist Flat Icon Vector.svg from Wikimedia Commons by Videoplasty.com, CC-BY-SA 4.0

Our pilot project captured

743 FRETish requirements

↓

Presented tooling derived

594 test cases

https://commons.wikimedia.org/wiki/File:Reports_Flat_Icon.svg
https://commons.wikimedia.org/wiki/File:Checklist_Flat_Icon_Vector.svg
https://commons.wikimedia.org/wiki/Main_Page
https://videoplasty.com/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Benefits of FRETish Requirements & Test Automation
So why are we doing this?

September 17, 2024ZEISS 32

FRETish Requirements

▪ Clear and unambiguous semantics

▪ Machine-parsable

▪ Additional use cases like model checking, simulation, …

Robot Framework

▪ Tests expressed in human-readable form and understandable for non-SW folks

▪ Derivable from FRETish requirements (traceability included)

▪ Obviously, not limited to automatically generated tests

▪ Keyword Libraries for re-use and separation of concerns

Zephyr

▪ Market-leading RTOS library and embedded firmware framework

▪ Built-in HIL-support

▪ Extensible and tunable to specific needs

Future Improvements for Robot Twister Integration
Let's work together!

Make general usage of Robot available upstream

• Allow robot scripts without renode · Issue #64825 · zephyrproject-rtos/zephyr (github.com)1)

• Integrate Robot Framework without Renode into twister by MP-StefanKraus · Pull Request #67607 · zephyrproject-
rtos/zephyr (github.com)2)

Not mergeable as is since community should also address technical debts in twister codebase

• Pytest harness works quite different from other harnesses

• Redundant implementations between Twister handlers and pytest_twister_harness adapters – which to choose?

• Provide consistent extension API for handlers/harnesses

September 17, 2024ZEISS 33

(1) https://github.com/zephyrproject-rtos/zephyr/issues/64825

(2) https://github.com/zephyrproject-rtos/zephyr/pull/67607

https://github.com/zephyrproject-rtos/zephyr/issues/64825
https://github.com/zephyrproject-rtos/zephyr/pull/67607

The End
Come talk to us

17 September 2024ZEISS 34

Dr. Tobias Kästner
Solution Architect Medical IoT
Inovex GmbH

Safety Working Group, Zephyr Project
Maintainer Bridle Project, Tiac-Systems

Christian Schlotter
Software Architect
Carl Zeiss Meditec AG

Security Committee, Zephyr Project

Stefan Kraus
Senior Software Engineer
UL Solutions

Working for a safer world

The digitally controlled microscope
FRETish Requirements for non-rocket things

IN "(sample_prep|capture)" mode UPON request_change_objective the nose_piece_controller SHALL within 1 second
SATISFY objective_lens_changed_clockwise_ok & answer_request_ok.

IN tube_moving mode UPON request_change_objective the nose_piece_controller SHALL within 100 milliseconds SATISFY
answer_request_denied.

September 17, 2024ZEISS 36

Scope Conditions Component* SHALL* Timing Response*.

The digitally controlled microscope
FRETish Requirements for non-rocket things

UPON (tube_moving_upwards & tube_at_upper_end) the tube_motion_controller

SHALL at the next timepoint SATISFY tube_position_hold.

UPON (tube_moving_downwards & tube_at_bottom_end) the tube_motion_controller

SHALL at the next timepoint SATISFY tube_position_hold.

IN "(normal|homing)" mode UPON request_move_up the tube_motion_controller SHALL within 200 milliseconds

SATISFY IF !tube_upper_end THEN (tube_moving_upwards & answer_request_ok).

IN "(normal|homing)" mode UPON request_move_down the tube_motion_controller SHALL within 200 milliseconds
SATISFY IF !tube_bottom_end THEN (tube_moving_downwards & answer_request_ok).

The tube_motion_controller SHALL always

SATISFY IF (tube_moving_upwards | tube_moving_downwards) THEN tube_moving.

September 17, 2024ZEISS 37

Scope Conditions Component* SHALL* Timing Response*.

FRET exported requirements
FRET tool exports to simple JSON

IN "(sample_prep|capture)" mode

UPON request_illuminate_on

the illumination_controller

SHALL

within 200 milliseconds

SATISFY (

illumination_on &
actual_brightness = configured_brightness &
answer_request_ok

)

September 17, 2024ZEISS 38

{

"reqid": "REQ-02-01",

"fulltext": "IN \"(sample_prep|capture)\" mode UPON
request_illuminate_on illumination_control SHALL within 200
millisecond SATISFY (illumination_on & actual_brightness =
configured_brightness & answer_request_ok)",

"semantics": {

"scope_mode": "\"(sample_prep|capture)\"",

"regular_condition_unexp_pt": "request_illuminate_on",

"component_name": "illumination_control",

"timingTextRange": [86, 107],

"post_condition_unexp_ft": "((illumination_on &
(actual_brightness = configured_brightness)) & answer_request_ok)",

"variables": ["request_illuminate_on", …]

}

}

What we did not cover
There is only so much you can say in 30 mins

September 17, 2024ZEISS 39

NASA FRET
Tool

Executable
Robot Test

Cases

Twister Test
Report

Execute with

Twister

Convert with

fret-to-robot

Requirements
Management

Tool

Test
Specification

Test Report

Convert to format that
can be parsed by FRET

Generate document Generate document

Current State of Robot integration into Twister

• Upstream Zephyr supports running Robot Test Suites in Twister via robot harness

• Harness employs renode-test to run a Robot Test Suite in Renode

• Starts Renode in the background

• Configures it to allow Robot Framework to connect to Renode

• Robot Framework integration in Renode provides special keywords

• Start Emulation

• Send Key to Uart

• Wait For Outgoing Packet

• …

September 17, 2024ZEISS 40

Twister Test
Runner

robot
Harness

renode-
robot
Runner

renode-
test

Renode logo: © Antmicro, MIT License

https://github.com/renode/renode/blob/master/LICENSE

	Cover
	Slide 1: Level Up Your Embedded Testing Game

	Motivation
	Slide 2: Medical is all about Trust
	Slide 3
	Slide 4: It‘s not only what we care about
	Slide 5: Our plan for today

	FRET
	Slide 6: Requirements Engineering
	Slide 7: FRETish Requirements
	Slide 8: FRETish Requirements
	Slide 9: FRETish Requirements
	Slide 10: FRETish Requirements
	Slide 11: FRETish Requirements
	Slide 12: Tools for FRETish Requirements
	Slide 13: Tools for FRETish Requirements
	Slide 14: Tools for FRETish Requirements
	Slide 15: The digitally controlled microscope
	Slide 16: The digitally controlled microscope
	Slide 17: The digitally controlled microscope

	Robot
	Slide 18: Our plan for today
	Slide 19: Robot Framework
	Slide 20: Robot Framework

	From FRET to Robot
	Slide 21: Our plan for today
	Slide 22: From FRET to Robot
	Slide 23: Generated Robot testcase
	Slide 24: Keyword implementation 

	Robot & Twister
	Slide 25: Our plan for today
	Slide 26: Zephyr, Twister and Test Harnesses
	Slide 27: Current State of Robot integration into Twister
	Slide 28: Introducing the robotframework Twister harness
	Slide 29: Our current setup

	Conclusion & Outlook
	Slide 30: Our plan for today
	Slide 31: What we achieved so far
	Slide 32: Benefits of FRETish Requirements & Test Automation
	Slide 33: Future Improvements for Robot Twister Integration
	Slide 34: The End

	Final Slide
	Slide 35

	Epilogue
	Slide 36: The digitally controlled microscope
	Slide 37: The digitally controlled microscope
	Slide 38: FRET exported requirements
	Slide 39: What we did not cover
	Slide 40: Current State of Robot integration into Twister

