
Dart
A language believed dead,
experiences a new bloom 🌸

Team inovex
Karlsruhe · Köln · München · Hamburg
Berlin · Stuttgart · Pforzheim · Erlangen 



Christoph Menzel

Head of Mobile & Web Development

● Software developer by heart
● Working in the IT sector since 2004
● Regular speaker at tech conferences
● Main topics

○ Clean code
○ Test automation
○ Security
○ CI / CD 

2

Christoph Menzel

@menzel42

@ traveling-developer

@traveling_developer_42

@traveling_developer@mastodon.social 



● Overview & History
● Type System
● Asynchronous Programming
● Interoperability
● Packages
● Tools
● Q&A

3

Agenda



Overview

● Open Source
● Main sponsor is Google

● First presentation was in October 2012
● Dart 1.0 was released in November 2013
● Focus was to build an alternative for JavaScript

○ But was not successful
○ ⚡

● New bloom with Flutter in 2018

4



Overview

“Dart is a client-optimized language 
for fast apps on any platform”

“Its goal is to offer the most productive programming language
for multi-platform development”

5



Overview

● Optimized for UI
○ Async-await, isolate-based concurrency, sound null safety
○ Spread operator, collection if, familiar syntax

● Productive development
○ Hot reload, configurable tooling
○ Profiling, logging, debugging 

● Fast on all platforms
○ AOT & JIT compilation, instant startup
○ Compilation to JavaScript 

6



Under the Hood

7
https://dart.dev/assets/img/Dart-platforms.svg



The Type System

● Strongly typed with type inference
● Null safety

○ Variables can’t contain null unless you say they can
● Supports 

○ Generic types
○ Top-level functions
○ Top-level variables
○ Class functions (static and instance methods)
○ Class variables (static and instance variables)

● No public, protected and private keywords
● An underscore (_) is used to mark a member as private to its library

8



Live Coding

9



Asynchronous Programming

● async-await, Future, Stream and Isolate for concurrent programming

● await keyword works only in async functions

● Future and Stream represent future values

● Isolate is like a thread or process but has its own memory heap
● Inside an Isolate a single thread running an event loop is used

10



Live Coding

11



Interoperability

● Different types of interoperability
○ Native C APIs
○ JavaScript
○ Objective-C and Swift
○ Java and Kotlin

12



Interoperability

● The dart:ffi library is used for native C APIs 
○ Supports calling APIs and read, write, allocate and deallocate 

native memory

● Calling JavaScript APIs is supported via the dart:js_interop 
library

13



Interoperability

● The package:ffigen is used to call Objective-C and Swift APIs
● Furthermore it supports languages that compile to C modules 

following the C calling convention (e.g. Go or Rust)

● The package:jni and package:jnigen are used to call Java and 
Kotlin APIs

14

experimental



Live Coding

15



Packages

● pub.dev
● 52.652 packages available (April 2024)

● For publishing a Google Account is needed

● Keep in mind publishing is forever!
○ Only in view cases unpublishing is possible

16



Live Coding

17



Development Tools

● Hot reload
● Debugger
● Logging view
● App size tool
● CPU profiler
● Memory view
● Network view
● Performance view
● Formatter (dartfmt)
● Analyzer (dartanalyzer)
● …

18



Live Coding

19



And much much more

● Exceptions
● String interpolation
● Null-aware operators
● Conditional property access
● Optional positional parameters / optional named parameters
● Initializer lists
● Const constructors
● Typedefs
● Test support (Unit Tests)
● …

20



Q&A

21



Vielen Dank!

22

Christoph Menzel
Head of Mobile & Web Development

christoph.menzel@inovex.de

Allee am Röthelheimpark 11
91052 Erlangen

Christoph Menzel

@menzel42

@traveling_developer_42

@traveling_developer@mastodon.social 


