
Rust in
production

Matthias Endler

What is Rust?

https://www.erps.com.au/what-is-rust

Output:

Me explaining
Rust’s ownership
& borrowing,
lifetimes,
generics and
expression
syntax You

About Rust

Research project at Mozilla2006

2015 Version 1.0

2017 First Rust code in Firefox

2021 Rust Foundation

2024 3.7 million Rust users

My rust experience

● Using Rust since 2015
● Rust Cologne User Group
● “Hello Rust” YouTube channel
● Open Source work
● Rust consultancy
● Rust in production since 2020

Why was rust created?

● C++ code in Firefox had many security issues.
● Multithreaded code is hard to write with C++ (data races).

Rust vs other languages
Source: Jon Gjengset - Considering Rust

https://www.youtube.com/watch?v=DnT-LUQgc7s

vs Python

Much faster.

Much lower memory use.

Multi-threading.

Algebraic data types.

Pattern matching.

Comprehensive static typing, so:

Many fewer runtime crashes.

vs C/C++

No segfaults.

No buffer overflows.

No null pointers.

No data races.

Powerful type system.

Unified build system.

Dependency management.

vs Go

No GC pauses; lower memory use.

No null pointers.

Nicer error handling.

Safe concurrency.

Stronger type system.

Zero-cost abstractions.

Dependency management.

vs Java

No JVM overhead or GC pauses.

Much lower memory use.

Zero-cost abstractions.

ConcurrentModificationException

Pattern matching.

Unified build system.

Dependency management.

vs Javascript

Multi-threaded by design

Stronger typesystem

Static typing

No runtime overhead

Unified build system

Zero-cost abstractions

comparison

rust java go JS/TS

Community size Small Large Medium/Large Large

ecosystem Small Large Medium Large

Operational cost Low High Medium Medium

Safety High Low/Medium Low/Medium Low/Medium

Performance High Medium Medium Low

Tooling Good Okay Okay Okay

Complexity High Medium Low Low

Tangent: Java runtime behavior

Java application

Java runtime

Tangent: Java runtime behavior

Java application

Java runtime

container

Tangent: Java runtime behavior

Java application

Java runtime

container

Virtual machine

Tangent: Java runtime behavior

Tangent: Java runtime behavior

Time

CPU
usage

Bootup Jvm optimizations

Rust’s strengths

“ The reason that people use Rust
is because actually it's better
for building more reliable
systems.
Niko Matsakis, Lead of Rust Language Design Team

Discord: switching from go to rust

https://discord.com/blog/why-discord-is-switching-from-go-to-rust

Rust Go

Rust vs golang vs java vs python

https://medium.com/star-gazers/benchmarking-low-level-i-o-c-c-rust-golang-java-python-9a0d505f85f7

Aws: Rust’s impact on serverless pricing

Vulnerabilities in Firefox over time

Vulnerabilities in Firefox over time
Rust introduced

https://docs.google.com/spreadsheets/d/1flUGg6Ut4bjtyWdyH_9emD9EAN01ljTAVft2S4Dq620

Security issues are a very real problem

● Google
○ Chromium project finds that around 70% of serious

security bugs are memory safety problems

● Microsoft
○ 70% of bugs are memory safety issues

○ Each bug costs $150,000 to fix

○ >70 Million Dollars for fixing those bugs (in 2018)

Relative cost to fix bugs based on time of detection

Bugs detected during development cycle

Energy consumption

Rust’s weaknesses

Rust weaknesses

● Immature ecosystem
● Async/await support still very basic
● Lack of developers
● Learning curve
● Compile times

Learning curve

“
50% of developers were
productive in Rust
after 4 months
Google

“
It takes
several weeks
of hard effort
Microsoft

RUST
you

Size of programming communities 2023

Rust users

Major rust usage

● Linux Kernel
● Windows Kernel
● AWS Firecracker
● Dropbox storage layer
● Deno
● Turbopack (Webpack)
● Figma
● Cloudflare

Major rust usage

● Linux Kernel
● Windows Kernel
● AWS Firecracker
● Dropbox storage layer
● Deno
● Turbopack (Webpack)
● Figma
● Cloudflare
● Yes, and Crypto

https://twitter.com/gamaspace

You RN

A Case for
Your company?

Strategies for
Rust adoption

Popular ways of Rust integration

● Network APIs
○ Microservices

○ GraphQL

● Foreign-Function Interface (FFI)
○ Java

○ Python

○ C++

● WebAssembly
○ Frontend

○ Plugin-systems

Rust Adoption in Network APIs

Backend Service 1

Backend Service 2

Backend Service 3

API

Rust Adoption in Network APIs

Backend Service 1

Backend Service 2

Backend Service 3

API 🐢

Rust Adoption in Network APIs

Backend Service 1

Backend Service 2

Backend Service 3

API 🐢

Rust Adoption in Network APIs

Backend Service 1

Backend Service 2

Backend Service 3

API

Rust Adoption in monoliths

Rust Adoption in monoliths

Rust Adoption in monoliths

Rust Adoption in monoliths

Source

VS RUSTjava

https://www.youtube.com/watch?v=1faOd6KH-w4

java

⏱ 7 days

🤑 $1100/run

Source

RUST

⏱ 1 day

🤑 $80/run
VS

https://www.youtube.com/watch?v=1faOd6KH-w4

Rust adoption in hs-web-app

Rust integration in frontends / javascript

Requirements for adoption

Rust adoption
needs a catalyst

for success

Performance is a weak Catalyst
4x performance boost

https://blog.consol.de/software-engineering/web-application-development/rust-vs-quarkus-native-vs-spring-native/

Performance is a weak Catalyst
1.5x performance boost

https://blog.consol.de/software-engineering/web-application-development/rust-vs-quarkus-native-vs-spring-native/

GraphQL Case-Study

GraphQL Case-Study

1.The chosen project determines the

odds of successful Rust adoption.
(Choose wisely)

Finding your first project for rust

1. Fix Pain Points
Ideal for performance or concurrency issues.

2. Limit Scope
Choose an impactful yet medium-sized projects.

3. Play Rust’s Strengths
Find projects benefiting the most from lower
operational costs and stability.

Recruiting is hard and expensive.

Train your own people.
(Or hire me to do it)

Adopting rust
1. Identify Project

Select a meaningful project for Rust implementation.

2. Team Assessment
○ Do not hire new staff specifically for Rust.
○ Evaluate the current team's readiness:

■ Check for hidden Rust experts.
■ Consider experience in languages similar to Rust. (Java, Kotlin, C++)
■ Gauge the team's willingness to learn Rust.

3. Upskilling the Team
○ Self-guided learning using books and hands-on exercises.
○ Organize training workshops.
○ Team augmentation for asking harder questions.
○ Code reviews to improve the codebase.

You need a
Long-Term

mindset
(Think: years)

● Reduce operational costs

● Predictable performance

● Enable faster development cycles

● Less friction between dev and ops

● Developer happiness (most loved

language for 7 years in a row)

● Gradual adoption possible

benefits

● No quick wins
● Steep learning curve
● Long build times

(locally and in CI)
● Custom libraries required
● Need to write integrations

with existing code

Risks

corrode.dev/podcast

corrode.dev/podcast

