S

Svelte 5

Reactivity with Runes

g

INnovex

Svelte 4 Reactivity Revisited

Svelte identifies certain JS constructs and enhances
them with meaning:

o : creation of a local reactive state variable
o =: mutation of local state
o : derived local state

n [l gt component properties

Problems and downsides (state
on component level)

= The reactivity paradigm (let, =, $:) only works on the
component root level

= State mutation restricted to equals (=)

Demo Legacy
State

Problems and downsides
(derived values)

= Derived values easily get out of sync

= Derived values do not properly react to (all)
dependencies

Demo Legacy
Derived

Svelte 5 Runes

.10 the rescue.

"A letter or mark used as a

mystical or magic symbol."

Runes

Instead of using (misusing) Javascript syntax elements to
identify a certain use case, runes are introduced that are
recognized by the svelte compiler.

Runes are functions with reserved names.

1 let count = S$state(0)

Bonus-Feature: Typescript-Support!

Important Runes

$state, $derived, $effect,
$props, $inspect

1 <script>

2 let count = $state<number>(0)
3 </script>
4
5

<h2>{count}</h2>

n m 1S a state variable, under the hood backed by
a signal" the underlying programmatic primitive

m so any kind of
tracked and directly

= Typescript integration just works

= Arrays are implemented with a
mutation (push, pop, ...) can be
communicated

Demo $state

$derived

<script>
let count = $state(0)

1
2
3
4 let doubled = $derived(count * 2)
5 </script>

6

7

<h2>{count} / {doubled}</h2>

o[e]¥] el ¥=Xe] is also a normal state variable, also
backed by a signal.

= [t updates automatically whenever one of the
dependent state variables are mutated

= Only a expression, not a function call

Demo $derived

<script>
let count = S$state(0)
Seffect(() => {
console.log(count has been updated to ${count})
})
Seffect(() => {
console.log('mount’)
return () => console.log('unmount')
})
</script>
<h2>{count}</h2>

$effect

= function expression
= runs after every DOM updates
= the framework identifies dependencies on runtime

= the defacto replacement for all lifecycle hooks:
= onMount

= onDestroy
= afterUpdate
= (beforeUpdate)

Demo $effect

$effect

Pay attention when converting "old" lifecycle hooks to
$effect!

1 <script>

2 let count = $state(0)

3 let doubled = S$Sstate(0)
4

5 Seffect(() => {

6 doubled = count * 2

7 1)

8 </script>

1 <script>

2 let count = S$state(0)

3 let doubled = S$derived(count * 2)
4 </script>

$effect

Rich Harris €& @Rich Harris - Sep 15

9 one of the reasons Svelte 5 has a rune called '$effect' (rather than
something like 'watch' or 'autorun' or whatever) is to discourage you from

actually using it

@ Ben Lesh & @Benlesh - Sep 15

No matter the framework, if you see something with “effect” in the
nhame, try not to use it. Seriously. Do your best.

O 18 127 ©® 495 il 60K N

$Sprops
Use "normal” destructuring to access componen
properties. No more use of the irritating [Sh4eJelmd syntax.

1 <script>
2 let { optionalProp = 42, requiredProp } = Sprops();
3 </script>

<script>

// no more $Srestprops

let { a, b, ¢, ...everythingElse } = $props();
</script>

S W N R

<script>
interface MyProps {
a: string

}

let { a }: MyProps = $props();
</script>

N o0k WN

$inspect

<script>
let count = $state(0)

Sinspect(count)
</script>

<button onclick={() => count++}>
increment
</button>

O 00 O U1 i WDN

Only executed in development, logs the initial value and
on every update.

"init"

0
"update"
1
"update"
2

Reuse of known paradigms

The reactivity paradigm can now be applied in a reusable
way.

Demo Reactivity
Pattern

Things that became obsolete
and their replacement

Obsolete Replacement

let {foo} = $props

lifecycle methods onMountB $effect
beforeUndateps$effect.pre
afterUpndatepA$effect

onDestroypEsgreturn value from $effect

$: doubled = count *x 2 let doubled = $derived(count * 2)

Stores and store apis $state

$$restProps let {...restProps} = $props

More Svelte 5 Changes

= Snippets will replace slots

= Event handlers via instead of [s]plel%Ke]
= Support for nested CSS syntax

» Deprecation of ERut=IgVeJsEhus], ol gV oJeEhus],

createEventDispatcher

Release

= No Release date yet (originally was April 2024)
= Already be usable via the next RC
= Not recommended for production

<» Code (%) Issues 823 i Pullrequests 62 §J) Discussions () Actions [Project:

 Milestones

No due date 97% complete

() 11 0pen .+ 533 Closed

(© Svelte 5: List of libraries not working out of the box
#10359 opened on Feb 1 by dummdidumm

© v4 site polish site
#8784 opened on Jun 22, 2023 by benmccann O 12 of 20 tasks

(© Svelte 5: erroriwarning follow-up tasks
#11305 opened on Apr 24 by Rich-Harris Q) 4 of 5 tasks

© Svelte 5: Undocumented breaking changes
#11400 opened on Apr 30 by Conduitry O 3 tasks done

(© Svelte 5: only block root tags are checked for being closed awaiting submitter

#12635 opened on Jul 28 by Tnik

(© Svelte 5: Some boolean attributes are incorrectly rendered with
<svelte:element>.

Resources

= Svelte 5 Introduction: https://svelte.dev/blog/runes

= Svelte 5 Playground: https://svelte-5-
preview.vercel.app/

= Official Documentation: https://svelte.dev/docs

https://svelte.dev/blog/runes
https://svelte-5-preview.vercel.app/
https://svelte-5-preview.vercel.app/
https://svelte.dev/docs

