
Learning from the
mistakes of others
Understanding web security
through counterexamples

Clemens Hübner
inovex GmbH

Software Security Engineer @ inovex

Helps secure applications, still hacks them

Located in Munich

Clemens Hübner

3

@ClemensHuebner clemens.huebner@inovex.de

@inovexlife

@clemens@infosec.exchange /clemens-huebner

blog.inovex.de��

Preliminary

learning from
the mistakes of others

fingerpointing & blaming

≠

P
ho

to
 b

y
G

iu
lia

 M
ay

https://unsplash.com/@giuliamay?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

OWASP Top Ten

6

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

OWASP Top Ten

7

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

OWASP Top Ten

8

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

Insecure Direct Object Reference (IDOR)

● DiGA Novega: Treatment of depression via web application through
video/audio and interactive exercises

● Data download (required by GDPR)

○ GET https://www.novego.com/myaccount/participant/data-export/21378

○ 21378 = User ID

9

https://www.novego.com/myaccount/participant/data-export/export/21378

Insecure Direct Object Reference (IDOR)

GET https://www.novego.com/myaccount/participant/export/21377

● Email address
● Gender
● therapy program registered
● self-assessment results

10

found by

https://www.novego.com/myaccount/participant/data-export/export/21378

Insecure GraphQL API

● Grocery delivery start-ups Flink und Gorillas both use GraphQL-APIs
● GraphQL

○ Introspection: self-documented API
○ client defines return object

● Similar flaws found at Flink (03/2021) and Gorillas (05/2021)

11

found by

Insecure GraphQL API: Flink

● self-documented GraphQL API

12

Insecure GraphQL API: Flink

● self-documented GraphQL API

13

Insecure GraphQL API: Flink

● self-documented GraphQL API

14

Insecure GraphQL API: Gorillas

15

Takeaways

● IDOR:
○ Don’t use incrementing IDs, but e.g. UUIDs
○ Don’t rely on secrecy of IDs

● Insecure API:
○ GraphQL needs other Authz measures

● In general:
○ Design Authz early
○ Follow principle of least privilege
○ Deny by default
○ Test for misuse cases

16

OWASP Top Ten

17

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

JWT Failures

● JWT = JSON Web Token
● standard for JSON-Payload that is signed and/or encrypted
● often used for Authn/Authz tokens

18

Design flaws of JWT as Authn token

● Logout is impossible
○ self-contained token are valid as long they are not expired
○ logout = revocation is not possible without losing JWT’s advantages

● Change of permissions/roles is hard
○ needs re-issue of token

● Good reasons JWT might be no good idea at all
→ Stop using JWT for sessions

19

http://cryto.net/%7Ejoepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/

Implementation flaws of JWTs

● complex cryptography without secure defaults
○ RSA PKCS#1 v1.5 problematic since 1998

● over-engineered standard
○ too many use cases leading to unreasonable variants

● flexible specification, leading to error-prone
implementations
○ None-Attack
○ polyglot JWTs

21

Implementation flaws of JWTs: None-Attack

● alg allows specification of different algorithms

22

Implementation flaws of JWTs: None-Attack

● None is also a valid algorithm, meaning the signature is not checked

23

Implementation flaws of JWTs: Polyglot JWTs

24

presented by Tom Tervoort at

https://i.blackhat.com/BH-US-23/Presentations/US-23-Tervoort-Three-New-Attacks-Against-JSON-Web-Tokens-whitepaper.pdf

Implementation flaws of JWTs: Polyglot JWTs

25

presented by Tom Tervoort at

https://i.blackhat.com/BH-US-23/Presentations/US-23-Tervoort-Three-New-Attacks-Against-JSON-Web-Tokens-whitepaper.pdf

Implementation flaws of JWTs: Polyglot JWTs

26

python-jwt split on
periods, and

ignored non-base64
characters:

jwcrypto ignored
unknown JSON
fields:

presented by Tom Tervoort at

https://i.blackhat.com/BH-US-23/Presentations/US-23-Tervoort-Three-New-Attacks-Against-JSON-Web-Tokens-whitepaper.pdf

Takeaways

● Consider alternatives to JWT
○ use Session Token
○ use PASETO / Macaroon / Biscuits

● Use modern, patched JWT library
● Set algorithm explicitly

27

OWASP Top Ten

28

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

Cross-Site-Scripting (XSS)

● User input is contained in the application in a way allowing
an attacker to execute arbitrary scripts in the victim’s
browser

<script>alert(42);</script>

● Affects all user controlled data, including URL parameter,
request body, header and cookies

29

Stored XSS: Ebay (2015)

30

Stored XSS: Ebay (2015)

31

Stored XSS: Ebay (2015)

32

Stored XSS: Ebay (2015)

33

XSS - Yesterday’s snow?

● Modern SPA frameworks prevent XSS quite
successful

● No longer a mass phenomenon
● XSS tends to be forgotten
● But: still relevant, when no framework is used

34

P
hoto by cottonbro studio

https://www.pexels.com/de-de/foto/blond-jung-teenager-junge-4842498/

OAuth Solution in Hyperscaler Cloud Product…

35

OAuth Solution in Hyperscaler Cloud Product…

36

<head>
<title> Login Complete</title>
<script type=text/javascript>

window.onload = function () {
try { document.getElementById('redirectLink').click()

}catch(a){}};
</script>

</head>
<body>

<a id=redirectLink href=/.auth/complete/#/http%3A%2F%2Fredirect.example.org
Click here if it doesn't automatically redirect.

</body>

https://traceability.XXXXXXX.com/.auth/login/aad?post_login_redirect_uri=http%253A%252F%252Fredirect.example.org

OAuth Solution in Hyperscaler Cloud Product…

37

<head>
<title> Login Complete</title>
<script type=text/javascript>

window.onload = function () {
try { document.getElementById('redirectLink').click()

}catch(a){}};
</script>

</head>
<body>

<script>alert('xss')</script>>
Click here if it doesn't automatically redirect.

</body>

https://traceability.XXXXXXX.com/.auth/login/aad?post_login_redirect_uri=%23/%3E%3Cscript%3Ealert(%27xss%27)%3C/script%3E

Takeaways

● How are you handling XSS?
○ Modern web frameworks do it quite well
○ Don’t forget it everywhere else!

● Do defense in depth
○ HttpOnly Cookies
○ Content Security Policy (CSP)
○ (WAF)

38

OWASP Top Ten

39

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

Insecure Design: Web Race Conditions

● exploit race conditions between security relevant process steps
○ redeeming a voucher
○ usage of one-time-token (e.g. OTP)
○ withdrawing/transferring of money
○ identification/registration

● network latency, jitter and internal latency cause exploitable delays

40

Web Race Conditions: Bonify (2023)

Bonify: FinTech-Startup for to assess creditworthiness of applicants

Authentication and identification via bank account

41

bonify — das Schufa-Startup, das jedem sagt, ob Du kreditwürdig bist | by Lilith Wittmann

https://lilithwittmann.medium.com/bonify-das-schufa-startup-dass-jedem-sagt-ob-du-kreditw%C3%BCrdig-bist-a0500a53c754

Web Race Conditions: Bonify (2023)

Microservice architecture with service-to-service communication

Registration process:

1. Creation of user in user-service

2. Login in online banking, under supervision of banking-service

3. Request of name information held in banking-service by the user-service

4. Flagging of user as “validated”

42

Web Race Conditions: Bonify (2023)

Microservice architecture with service-to-service communication

Registration process:

1. Creation of user in user-service

2. Login in online banking, under supervision of banking-service

3. Request of name information held in banking-service by the user-service

4. Flagging of user as “validated”

43

Change of user’s name

44

Takeaways

● Thoroughly design processes
● Take timing into account - don’t rely on an

implicit order
○ When is state changed?
○ Can two requests change the same record?

● Consider abuse cases
● Perform threat modelling

for attacker’s view

45

OWASP Top Ten

46

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

Security Misconfiguration: Public S3 Buckets

47

Takeaways

● Use automated, repeatable processes
 to deploy environments

● Identical setups for all stages
(but different secrets)

● careful configuration of all layers
using best practices

● Use automated test tools / external testers

● For developers: provide secure defaults

48

OWASP Top Ten

49

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

Vulnerable and Outdated Components: Log4Shell

● a zero-day vulnerability in Log4j, a Java logging framework
● allowing arbitrary code execution
● existed unnoticed since 2013, published and patched in 2021

● basic and popular framework, big impact through many transitive
dependencies

● common problems: Where do we use it? Are we affected?

50

Takeaways

● Have a detailed software inventory (e.g. SBOM)
● Reduce unnecessary dependencies

● Tool recommendations:
○ Renovate
○ OWASP Dependency Track

● Plan maintenance of your software
● Ensure fast ability of patch

51

OWASP Top Ten

52

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

Identification and Authentication Failures

User’s mistakes with passwords:

● Weak passwords

● Very weak passwords

● Wrong handling of passwords

● Reuse of passwords

53

Identification and Authentication Failures

User’s mistakes with passwords:

● Weak passwords

● Very weak passwords

● Wrong handling of passwords

● Reuse of passwords

54

→ Brute Force Attacks
 try a lot of passwords for a user
→ Password Spraying
 try weak password for multiple users
→ Phishing Attacks
 trick the user to tell you the password
→ Credential Stuffing
 try a lot of known pairs of
 username/password

Credential Stuffing: 23andMe (2023)

23andMe: company to explore your own genetic material

Breached using Credential Stuffing

Attackers gained access to millions of user profiles, containing name, sex, age and details
about genetic ancestry

Data sets were grouped by ancestry, e.g. 1 million-user data set of Ashkenazi Jews

55

56

Takeaways

Users:

● Use secure passwords
● Check for breached passwords
● Use multi-factor (or passwordless) authentication

Devs:

● Allow multi-factor (or passwordless) authentication
● Defense in depth

○ Brute Force protection
■ CAPTCHAs
■ IP Mitigation

○ Identify leaked passwords
○ Keep usernames secret
○ Notify users about security events

57

OWASP Top Ten

58

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. Software and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Credential
Stuffing

Public S3 Buckets

Web Race Conditions

JWT Attacks

IDOR

Insecure APIs

XSS-Phishing

log4shell

Learn from the
mistakes of others

Consider security from
the beginning and
continuously

Keep up-to-date with
threats and check with
your attack surface

Thank you!

/clemens-huebner

60

@ClemensHuebner

clemens.huebner@inovex.de

@inovexlife

@clemens@infosec.exchange

blog.inovex.de��

inovex is an IT project center
driven by innovation and
quality, focusing its services
on ‘Digital Transformation’.

● founded in 1999
● 500+ employees
● 8 offices across Germany

www.inovex.de

