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Motivation

cardiac arrhythmias are one of the 
leading causes of death worldwide

17.8 million 
deaths

primary method for the detection of 
arrhythmias is the electrocardiogram

300 million 
ECG-strips
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1

2

1 worldwide in 2017
2 worldwide per year

classification of arrythmias with 
ML and DL based on ECGs
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Motivation

ECGs are used in a medical context and 
do not allow long-term monitoring

application of photoplethysmography (PPG) 
in smart devices to detect arrhythmias

4

classification of multiple arrhythmias 
based on PPGs are limited

Improving the classification of various heart rhythm abnormalities by an 
ensemble of binary classifiers
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ECG and PPG

ECG
• measures the electrical activity of all heart

muscle fibres

• low portability

• maximum time of monitoring ≈ 3 days

• accurate

PPG
• measures the volumetric changes of blood in the

microvascular tissue bed

• build into smart divices

• constant monitoring

• can be inaccurate
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ECG

PPG

PPGs and ECGs are related to each other

• peak of ECG = contraction of ventricles

• transport of blood through the veins

→ blood valume increases

V. Kalidas and L. S. Tamil, “Cardiac arrhythmia classification using multi- modal signal analysis,” 
Physiological Measurement, vol. 37, pp. 1253–1272, jul 2016. 
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Neha, Sardana, H.K., Kanwade, R. et al. Arrhythmia detection and classification using ECG and PPG techniques: a review. Phys
Eng Sci Med 44, 1027–1048 (2021). https://doi.org/10.1007/s13246-021-01072-5

• more research with ECG data

• approaches include

statistical methods, machine

learning, deep learning, etc.

• focus in publications with

PPG data is primarly on the

single-class classification
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Multiclass Arrhythmia Detection from PPG Signals
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multiclass classification of five arrhythmias and sinus rhythm

accuracy: 85% (imbalanced dataset)

deep convolutional neural network (DCNN) based on the VGGNet-16 architecture

own dataset with 228 patients and 118,217 10-second sequences

inter-patient approach
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Multiclass Arrhythmia Detection from ECG Signals
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combination of topological data analysis, handcrafted features, Fast Fourier Transformation, and deep learning

Autoencoder:
• compensation between

normal and abnormal heart
rhythm

• trained with sinus rhythm

Betti Curve:
• from ECG-sequences
• curve is processed in 

an CNN

Convolutional 
Neural Network:
• signal as input

Others:
• Fast-Fourier-

Transformation
• handcrafted

features

model architecture as a baseline for the classification of arrhythmias with PPG data
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Model Architecture

CNN global average pooling

CNN global average pooling

concatenate fully-connected arrhythmia-
class

reconstruction error
sinus-

rhythmz
if reconstruction
error > threshold

else

autoencoder

Betti curves

 topological data analysis

convolutional neural network

 multi-channel neural network

network 1

network 2
arrhythmia

start
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Multiclass Model Architecture Multiclass

Concatenation

Input
Number of Channels: 1

Convolution
Number of Filters:  16
Kernel Size:                 3
Padding:                       1

Max Pooling
Kernel Size:                 3
Stride:                           1

Dropout

ReLU

Convolution
Number of Filters:  32
Kernel Size:                 5
Padding:                       1

Max Pooling
Kernel Size:                 3
Stride:                           1

Dropout

ReLU

Convolution
Number of Filters:  64
Kernel Size:                 7
Padding:                       1

Max Pooling
Kernel Size:                 3
Stride:                           1

Dropout

ReLU

Input
Number of Channels: 2

Convolution
Number of Filters:  16
Kernel Size:                 3
Padding:                       1

Max Pooling
Kernel Size:                 3
Stride:                           1

Dropout

ReLU

Convolution
Number of Filters:  32
Kernel Size:                 3
Padding:                       1

Max Pooling
Kernel Size:                 3
Stride:                           1

Dropout

ReLU

Convolution
Number of Filters:  64
Kernel Size:                 3
Padding:                       1

Max Pooling
Kernel Size:                 3
Stride:                           1

Dropout

ReLU

Global Average Pooling

128

64
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Global Average Pooling

Betti-CNN

CNN

• application of small model architectures due to the small
number of available samples

• model outputs one of five classes
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Ensemble of Multiple Binary Classifiers

CNN-A

CNN-N

CNN-SVT

CNN-VT

CNN-V

[N]

convolutional neural network

True

False

False

False

False

• division of the multiclass problem into subtasks

• each model performs a binary classification

• combined output carries out the classification

• one-vs-all combination
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Data
Sinus-Rhythm

2722
2316

876
612

22,60521,420

13,010 6135

VT (ventricular tachycardia)
PVC (premature ventricular contraction)
SVT (supraventricular contraction)
PAC (premature atrial contraction)

ECG PPG

ECG PPG

Sinus-Rhythm
ECG: 672,141
PPG:    77,755

• data from different 
patients and different 
databases

• extraction of two-
second long sequences

• inter-patient approach
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• models are tested independently

• one model for each approach and data type

• F1-score as evaluation criteria
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Results

Auto-
encoder

Betti-
CNN

CNN

Multi-
channel
Network

Multiclass Model

Ensemble of Binary Classifiers

ECG

PPG
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Results Multiclass Model
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ECG

Autoencoder Betti-CNN CNN Multichannel
Network

ECG 89% 62% 56% 61%

PPG 65% 35% 7% 18%

F1-scores of each model in the multiclass model for each data type
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Results Ensemble of Binary Classifiers

Model Multiclass Approach Binary Ensemble

Betti-CNN 35% 59%

CNN 7% 71%

Multichannel Model 18% 89%

Class Betti-CNN CNN Number of Samples

sinus rhythm 91% 96% >5,000,000

premature ventricular contraction 93% 92% 2,316

ventricular tachycardia 92% 89% 2,731

premature atrial contraction 66% 50% 612

supraventricular tachycardia 91% 88% 867

ECG

F1-scores of each model in the binary ensemble trained on ECG data for each class and the number of samples.

Comparison of F1-score performance between the multiclass approach and the ensemble of binary classifiers. 

PPG
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Conclusion

advantages of ensemble approach:

• benchmark results with small model structures and less training data

• multiple labels per sequence

• practical for smart device applications

improvement of the multiclass classification of cardiac arrhythmias in PPG signals

ensemble of multiple one-vs-all binary classifiers

F1-score of 89% for five classes on PPG data, outperforming other methods

verification of CNN performance with larger training data and more complex structure
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